Find the five remaining trig functions

1.
$$\sec \theta = \frac{5}{2}$$

Find the five remaining trig functions

1.
$$\sin \theta = \frac{4}{\sqrt{21}}$$

Find the value using your calculator and then draw the triangle represented by the trig function.

5.
$$\cos(190^{\circ}) =$$

6.
$$cot(346^{\circ}) =$$

Solve the right Triangle ABC for all of its unknown parts.

Assume C is the right angle

1.
$$\alpha = 15^{\circ}$$
 $a = 10$

2.
$$\beta = 50^{\circ}$$
 $c = 12$

Find the six trig functions given a point

2. P(3, -7)

Find the exact value of each of the remaining trigonometric functions.

3.
$$\sin\theta = \frac{2}{5} \tan\theta < 0$$

$$4. \cos\theta = \frac{-\sqrt{2}}{5} \qquad \frac{\pi}{2} < \theta < \pi$$

Find the value using your calculator and then draw the triangle represented by the trig function.

5.
$$\sin^{-1}(.265) =$$

6.
$$\cos^{-1}(-.265) =$$

Solve the equation using your calculator give answers between $0 \le \theta \le 360$

$$7.\cos(\theta) = .636$$

Find the exact value of the expression

8.
$$\cos(495^{\circ}) = 9. \sin(540) =$$

10.
$$\tan(420^{\circ}) =$$

Find the exact value of the expression

11.
$$\cos^{-1}\left(\frac{-\sqrt{3}}{2}\right) = 12. \sin^{-1}\left(\frac{-\sqrt{2}}{2}\right) =$$

13.
$$tan^{-1}(1) =$$

Solve the equation between

$$0 \le \theta < 360^{\circ}$$

14.
$$\sin\theta = \frac{\sqrt{2}}{2}$$

$$15.\cos(\theta) = \frac{-1}{2}$$

16.
$$\tan(\theta) = \frac{-1}{\sqrt{3}}$$

17.
$$\sin(\theta) = -0.321$$

Solve the equation between

$$0 \le \theta < 2\pi$$

14.
$$\sin(2\theta) = \frac{\sqrt{2}}{2}$$

$$15.\cos(3\theta) = \frac{1}{2}$$

16.
$$\cos(4\theta) = \frac{-1}{2}$$

17.
$$\sin(6\theta) = \frac{\sqrt{3}}{2}$$

Solve the equation between

$$0 \le \theta < 2\pi$$

14.
$$\sin(2\theta) = \frac{\sqrt{2}}{2}$$

$$15.\cos(2\theta) = \frac{1}{2}$$

16.
$$\sin\left(\frac{\theta}{2}\right) = 1$$

Solve the equation between $0 \le \theta < 2\pi$

17.
$$5\csc(\theta) + 4 = 9$$

18.
$$\sin^2(\theta) - 2\sin\theta + 1 = 0$$

19.
$$\sin^2(\theta) - 2\sin\theta = 0$$