\qquad
Find the exact value of the function without using a calculator.

1. $\tan \frac{14 \pi}{6}=$
2. $\sin \frac{19 \pi}{4}=$
3. $\sec (-30)^{\circ}=$
4. $\cos (-210)^{\circ}=$
5. $\cos 600^{\circ}=$
6. $\quad \csc 540^{\circ}=$
7. $\cot \frac{-\pi}{3}=$
8. $\sin \frac{-4 \pi}{3}=$

Find the exact value of the expression. Give the answer in both degrees and radians.

1. $\sin ^{-1} \frac{1}{2}=$
2. $\cos ^{-1} \frac{-\sqrt{3}}{2}=$
3. $\tan ^{-1}(1)=$
4. $\tan ^{-1}\left(\frac{-1}{\sqrt{3}}\right)=$
5. $\cos ^{-1}\left(\frac{1}{2}\right)=$
6. $\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)=$

Find the exact value of the expression
7. $\cot \left(\sin ^{-1}\left(\frac{-1}{2}\right)\right)=$

Solve each equation between $0 \leq \theta<360$ or $0 \leq \theta<2 \pi$
9. $\sqrt{2} \sin \theta-1=0$
10. $\cos 2 \theta=\frac{\sqrt{3}}{2}$
11. $-2 \sin \theta=1$
12. $\sqrt{3} \tan (\theta)+1=2$
13. $\cos \left(\theta+\frac{\pi}{6}\right)=\frac{1}{2}$
14. $2 \cos ^{2} \theta+1=2$

1. Given that $\csc \theta=\frac{\sqrt{6}}{2}$, use definitions or identities to find the exact value of the remaining five trigonometric functions of the acute angle θ found in quadrant 1 .
$\sin \theta=$ $\csc \theta=$
$\cos \theta=$ $\sec \theta=$
$\tan \theta=$
$\cot \theta=$
2. Find the six trigonometric functions given the point (-7, -9)
$\sin \theta=$
$\cos \theta=$
$\tan \theta=$
$\csc \theta=$
$\sec \theta=$
$\cot \theta=$

Given the following information, find the exact value of the trigonometric function
3. $\csc \theta=\frac{7}{4}$ and $\tan \theta<0$ find $\cos \theta$
4. $\sec \theta=\frac{9}{-2}$ and $\tan \theta>0$ find $\cot \theta$
5. $\cos \theta=\frac{2}{7}$ and and $\cot >0$ find $\tan \theta$
4. Given an angle and a side of the triangle. Find the measurements of all missing sides and missing angles
$\angle B=22^{\circ} \quad \mathrm{c}=15$

5. A 32-foot ladder is leaning against the side of a building. If the ladder makes an angle of elevation of 20° with the ground, how far is the bottom of the ladder from the base of the building? Round your answer to the hundredths place.

Solve the equation between $0 \leq \theta<360$. Round your answers to the nearest tenth.
6. $\sin \theta=.364$

