Graph 1 period of the function

$$
\text { 1. } y=-4 \sin \left(\frac{2}{3} x-\frac{\pi}{3}\right)-1
$$

Graph 1 period of the function

$$
\text { 2. } \mathrm{y}=4 \cos \left(2 \pi \mathrm{x}-\frac{\pi}{2}\right)
$$

Graph 1 period of the function

$$
\text { 3. } \mathrm{y}=3 \sec \left(\frac{\pi x}{2}+\frac{\pi}{2}\right)-3
$$

Graph 1 period of the function

$$
\text { 4. } y=5 \csc (3 x-\pi)+1
$$

Graph 2 periods of the function

$$
\text { 5. } \mathrm{y}=\tan \left(4 x-\frac{\pi}{2}\right)+1
$$

Graph 2 periods of the function

$$
\text { 6. } \mathrm{y}=\cot \pi\left(x-\frac{1}{4}\right)+1
$$

Construct a sinusoid with the given amplitude and period that goes through the given point.

π

- Amp: 4, period - point $(0,0)$

5

Construct a sinusoid with the given amplitude and period that goes through the given point.

- Amp: 3, period 6 point $(3,0)$

February $12^{\text {th }}, 2016$, high tide occurred at $4: 15 \mathrm{pm}$. At that time the water was 2.5 meters deep. Low tide occurred at 7:45 a.m, at which time the water was only 1.2 meters deep. Assume that the depth of the water is a sinusoidal function of time with a period of about 12 hrs
a) Model the depth, D, as a sinusoidal function of time, t , algebraically then graph the function.
b) At what time did the first low tide occur?
c) What was the approximate depth of the water at 6:00 am and at 3:00 pm?
d) What was the first time on this day when the water was 2 meter deep?

Determine a sine and a cosine equation for the graph below

Determine a sine and a cosine equation for the graph below

Determine a tangent equation for the graph below

Determine a cotangent equation for the graph below

Write a cosecant equation for the periodic function.

Write a cosecant equation for the periodic function.

