Review Chapter 1

Find the domain of the following function

$$
f(x)=\sqrt{2-x}
$$

- Match the equation with the graph or the table (2 equations go with the graphs and 2 equations go with the tables)
(A) $y=2 x+3$
(B) $y=x^{2}+5$
(D) $y=4 x+3$
$[0,6]$ by $[-9,15]$

x	0	2	4	6	8	10
y	3	7	11	15	19	23

$[0,9]$ by $[0,6]$

Find the domain of the function algebraically

$$
f(x)=\frac{x}{x^{2}-5 x}
$$

Find the domain of the function algebraically

$$
f(x)=\frac{\sqrt{4-x}}{(x+1)\left(x^{2}+1\right)}
$$

Find the range of the function algebraically

$$
f(x)=10-x^{2}
$$

Find the range of the function algebraically

$$
f(x)=5+\sqrt{4-x}
$$

Graph the function and tell whether or not it has a point of discontinuity at $x=0$. If there is a discontinuity, tell whether it is removeable or non-removeable.

$$
f(x)=\frac{x^{3}+x}{x}
$$

State whether each labeled point identifies a local maximum, a local minimum, or neither. Identify intervals on which the function is decreasing and increasing.

Determine whether the function is even, odd, or even.
A) $f(x)=5 x^{4}+1$
B) $f(x)=-x^{2}+x+2$
C) $f(x)=2 x^{3}+x$

Determine all horizontal and vertical asymptotes

$$
f(x)=\frac{x^{2}+2}{x^{2}-1}
$$

Determine all horizontal and vertical asymptotes

$$
f(x)=\frac{2 x-4}{x^{2}-4}
$$

63. $y=\frac{x+2}{2 x+1}$
64. $y=\frac{x+2}{2 x^{2}+1}$
65. $y=\frac{x^{2}+2}{2 x+1}$
66. $y=\frac{x^{3}+2}{2 x^{2}+1}$ $2 x^{2}+1$

(a)

$[-4.7,4.7]$ by $[-3.1,3.1]$

(b)

(d)

Identify which of the twelve basic functions are increasing on their entire domain.

Identify which of the twelve basic functions

 have infinitely many extrema.
Graph the piecewise function

$$
f(x)=\left\{\begin{array}{ll}
2 x+1 & \mathrm{x}<0 \\
\mathrm{x}^{2}+3 & \mathrm{x} \geq 0
\end{array}\right\}
$$

Find formulas for f / g and g / f. Give the domain of each.

$$
f(x)=\sqrt{x-2} \quad \text { and } \quad g(x)=x^{2}
$$

Find formulas for $f(g(x)$ and $g(f(x))$. Give the domain of each.

$$
f(x)=x^{2}-2 \quad \text { and } \quad g(x)=\sqrt{x+1}
$$

Find a formulas for $\mathrm{f}^{-1}(\mathrm{x})$. Give the domain

$$
f(x)=\sqrt{x+2}
$$

Confirm that $f(x)$ and $g(x)$ are inverses.

$$
f(x)=x^{3}+1
$$

$$
g(x)=\sqrt[3]{x-1}
$$

Sketch graphs of the following.

$$
\begin{array}{ll}
f(x)=|x| & \mathrm{g}(\mathrm{x})=|x+2| \\
\mathrm{h}(\mathrm{x})=|x|-3 & \mathrm{j}(\mathrm{x})=|2 x|
\end{array}
$$

Draw the functions inverse

Write a formula for each function

- Transform the given function by a vertical stretch by a factor of 3

Transform the given function by a horizontal compress by a factor of $1 / 2$

Write an equation whose graph is g.
$f(x)=|x|$
a shift right 4 units, then a vertical
stretch by a factor of 2 , and shift down 4

Write an equation whose graph is g.

$$
f(x)=x^{2}
$$

a shift left 2 units, then a horizontal stretch by a factor of 2 , and shift up 3

Sketch the graph of $g(x)=3+2 f(x-1)$

Sketch the graph of $g(x)=-f(2 x)+2$

Find formulas for $f+g, f-g, f g$, and f / g. Give the domain of each.
$f(x)=2 x+5 \quad$ and $\quad g(x)=5 x-3$

Determine the end behavior for the function below. Assume that there are arrows on each end of the graph.

