Review Chapter 1

- Match the equation with the graph with the table
(A) $y=2 x+3$
(B) $y=x^{2}+5$
(C) $y=12-3 x$
(D) $y=4 x+3$
(E) $y=\sqrt{8-x}$

x	1	2	3	4	5	6
y	6	9	14	21	30	41

x	0	2	4	6	8	10
y	3	7	11	15	19	23

Find the domain of the function algebraically

$$
f(x)=\frac{\sqrt{9-x}}{(x+3)\left(x^{2}+4\right)}
$$

Find the domain of the function algebraically

$$
f(x)=\frac{5 x-1}{(x+2)(x-4)}
$$

Find the domain and range of the following function

$$
f(x)=(x-4)^{2}+2
$$

Graph the piecewise function

$$
f(x)=\left\{\begin{array}{ll}
3 x+2 & \mathrm{x}<0 \\
1-\mathrm{x}^{2} & \mathrm{x} \geq 0
\end{array}\right\}
$$

Determine any points of discontinuity. Label them as removeable or non-removeable. Also, determine any horizontal asymptotes.

$$
f(x)=\frac{x}{x^{2}-2 x}
$$

Find the range of the function algebraically

$$
f(x)=10-x^{2}
$$

Find the range of the function algebraically

$$
f(x)=5+\sqrt{4-x}
$$

Graph the function and tell whether or not it has a point of discontinuity at $x=0$. If there is a discontinuity, tell whether it is removeable or non-removeable.

$$
f(x)=\frac{x^{3}+x}{x}
$$

State whether each labeled point identifies a local maximum, a local minimum, or neither. Identify intervals on which the function is decreasing and increasing.

Determine whether the function is even, odd, or neither.

$$
\text { A) } f(x)=\frac{1}{3 x^{2}+2}
$$

$$
\text { B) } f(x)=\frac{1}{3 x}
$$

Determine all horizontal and vertical asymptotes

$$
f(x)=\frac{4 x^{2}+2}{8-2 x^{2}}
$$

63. $y=\frac{x+2}{2 x+1}$
64. $y=\frac{x+2}{2 x^{2}+1}$
65. $y=\frac{x^{2}+2}{2 x+1}$
66. $y=\frac{x^{3}+2}{2 x^{2}+1}$ $2 x^{2}+1$

(a)

$[-4.7,4.7]$ by $[-3.1,3.1]$

(b)

(d)

Identify which of the twelve basic functions are even or odd.

$$
\begin{array}{lllll}
y=x & y=\ln x & y=x^{2} & \mathrm{y}=\sin \mathrm{x} & y=x^{3} \\
y=\frac{1}{x} & y=|x| & y=\sqrt{x} & \mathrm{y}=\operatorname{int}(\mathrm{x}) & y=e^{x} \\
\mathrm{y}=\cos \mathrm{x} \\
& y=\frac{1}{1+\mathrm{e}^{-\mathrm{x}}}
\end{array}
$$

