Review Chapter 1

Match the equation with the graph with the table

$$(\mathbf{A}) \ y = 2x + 3$$

(B)
$$y = x^2 + 5$$

(D) $y = 4x + 3$

(C)
$$y = 12 - 3x$$

(D)
$$y = 4x + 3$$

(E)
$$y = \sqrt{8 - x}$$

\boldsymbol{x}	1	2	3	4	5	6
у	6	9	14	21	30	41

X	0	2	4	6	8	10
у	3	7	11	15	19	23

[0, 6] by [-9, 15]

Find the domain of the function algebraically

$$f(x) = \frac{\sqrt{9-x}}{(x+3)(x^2+4)}$$

Find the domain of the function algebraically

$$f(x) = \frac{5x-1}{(x+2)(x-4)}$$

Find the domain and range of the following function

$$f(x) = (x-4)^2 + 2$$

Graph the piecewise function

$$f(x) = \begin{cases} 3x + 2 & x < 0 \\ 1 - x^2 & x \ge 0 \end{cases}$$

Determine any points of discontinuity. Label them as removeable or non-removeable. Also, determine any horizontal asymptotes.

$$f(x) = \frac{x}{x^2 - 2x}$$

Find the range of the function algebraically

$$f(x) = 10 - x^2$$

Find the range of the function algebraically

$$f(x) = 5 + \sqrt{4 - x}$$

Graph the function and tell whether or not it has a point of discontinuity at x = 0. If there is a discontinuity, tell whether it is removeable or non-removeable.

$$f(x) = \frac{x^3 + x}{x}$$

State whether each labeled point identifies a local maximum, a local minimum, or neither. Identify intervals on which the function is decreasing and increasing.

Determine whether the function is even, odd, or neither.

A)
$$f(x) = \frac{1}{3x^2 + 2}$$

$$B) f(x) = \frac{1}{3x}$$

Determine all horizontal and vertical asymptotes

$$f(x) = \frac{4x^2 + 2}{8 - 2x^2}$$

63.
$$y = \frac{x+2}{2x+1}$$

65. *y*

$$=\frac{x+2}{2x^2+1}$$

$$\mathbf{66.} \ \ y = \frac{x^3 + 2}{2x^2 + 1}$$

(c)

[-4.7, 4.7] by [-3.1, 3.1][-4.7, 4.7] by [-3.1, 3.1]

Identify which of the twelve basic functions are even or odd.

$$y = x$$
 $y = \ln x$ $y = x^2$ $y = \sin x$ $y = x^3$ $y = \cos x$

$$y = \frac{1}{x}$$
 $y = |x|$ $y = \sqrt{x}$ $y = \cot(x)$ $y = e^x$ $y = \frac{1}{1 + e^{-x}}$