

Describe how to transform the graph of f into the graph of g.

A)
$$f(x) = 4|x|$$
 into $g(x) = 12|x|$

multiply the y's by 3 vertical stretch by a factor of 3

B)
$$f(x) = \sqrt{x+4}$$
 into $g(x) = \sqrt{x-10}$

subtract 14 from the x's Horizontal shift left 14

C)
$$f(x)=(x-4)^2$$
 into $g(x)=-(x+2)^2$
reflection over x-axis (opp of yis)
add 6 to xs
Horitontal shift left 6

Transform the function $f(x) = x^2 + 2x - 3$

a) vertical transformation of 3/b) a horizontal shrink by a factor of 1/2

$$f(x) = x^2 + 2x - 3$$

$$t(x) = x_5 + 5x - 3$$

$$f(x) = 3(x^2 + 2x - 3)$$

$$f(2x) = (2x)^2 + 2(2x) - 3$$

$$f(2x) = (2x)^2 + 2(2x) - 3$$

Find the equation of the refection of f across the

A)
$$f(x) = x^2 + 2x - 3$$

X-axis $-f(x) = -(x^2 + 2x - 3)$

B) $f(x) = 3\sqrt{x-2} + 1$

Y-axis $-f(x) = -(x^2 + 2x - 3)$

Y-axis $-f(x) = -(x^2 + 2x - 3)$

Write an equation whose graph is $g(x)$

Write an equation whose graph is g(x)

A) $f(x) = x^2$ a vertical stretch by a factor of 4, then a shift left 6 $g(x) = 4(x+6)^2$

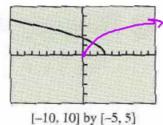
B)
$$f(x) = |x|$$
 a horizontal shift right 6 and a horizontal stretch by a Factor of 3

Write a formula for each function $4(x) = \sqrt{x}$

28.

left 5

26.



[-10, 10] by [-5, 5] Vertical stretch = 2

$$g(x) = \sqrt{-(x-3)}$$

Stretching vs Compressing

x	y=x2	
0	0	
1	1	
2	4	
3	9	
4	16	

X	$y=2x^2$
0	0
1	2
2	8
3	18
4	32

This is a vertical stretch of 2 because the y-values double

x	y=x2
0	0
1	1
2	4
3	9
4	16

x	$y=.5x^2$
0	0
1	.5
2	2
3	4.5
4	8

This is a vertical compression of .5 because the y-values get cut in half

X	y=x2	
0	0	
1	1	
2	4	
3	9	
4	16	

X	$y=(2x)^2$
0	0
1	4
2	16
3	36
4	64

This is a horizontal compression of ½ because it took half as long for the y-values to reach 16.

x	y=x2
0	0
1	1
2	4
3	9
4	16

x	$y=(.5x)^2$
0	0
1	.25
2	1
3	2.25
4	4

This is a horizontal stretch of 2 because it took twice as long for the y value to reach 4

Function	Change from base function	What to notice in the
$y = (x - 1)^2$	y = x ² Right 1	Do the opposite of the number inside the function (left or right movement)
$y = x^2 + 1$	Up 1	Do exactly what the function says outside the function (Up or Down movement)
$y = 2x^2$	Vertical Stretch toward the y- axis by a factor of 2	If there are no parenthesis and there is a number greater than 1 in front of the function this is vertical stretch
$y = \frac{1}{2}x^2$	Vertical Compression/Shrink away from the y-axis by a factor of $\frac{1}{2}$	If there are no parenthesis and there is a number between 0 and 1 in front of the function this is vertical compression
$y = (2x)^2$	Horizontal Compression/Shrink away from the x-axis by a factor of $\frac{1}{2}$	If the number is greater than 1 inside the function it is a horizontal compression/shrink by a factor of that numbers reciprocal
$y = \left(\frac{1}{2}x\right)^2$	Horizontal Stretch toward the x-axis by a factor of 2	If the number is between 0 and 1 inside of the function it is a horizontal stretch by a factor of that numbers reciprocal
$y = \left(-x\right)^2$	Reflection over the y-axis	This reflection occurs if the negative is inside the function
$y = -x^2$	Reflection over the x-axis	This reflection occurs if the negative is outside the function