		-	J			-	-
Weeks	0	9	18	27	34	43	49
Weight in pounds	6	8.6	10	13.6	15	17.2	19.8

The table shows the weight of an alligator at various times during a feeding trial.

- 1. Use your calculator to look at the graph of the data. Give the window.
- 2. Write the equation for the line of best fit for the data.
- 3. Determine what the rate of change means in the context of the problem.
- 4. Determine what the y-intercept means in the context of the problem.
- 5. Give the correlation value, r, from the calculator.
- 6. What does the value of r tell you about the weeks and the weight of the alligator.
- 7. Use the equation to determine the weight of the alligator after 5 weeks.
- 8. Use the equation to determine how many weeks it takes for the alligator to weigh 30 pounds.

The table shows the cost of visiting a working ranch for one day and night for different numbers of people.

Number of	4	7	8	10	13
People					
Cost	250	380	450	580	650
(dollars)					

- 1. Use your calculator to look at the graph of the data. Give the window.
- 2. Write the equation for the line of best fit for the data.
- 3. Determine what the rate of change means in the context of the problem.
- 4. Determine what the y-intercept means in the context of the problem.
- 5. Give the correlation value, r, from the calculator.
- 6. What does the value of r tell you about the number of people and the cost.
- 5. Use the equation to determine the cost for 5 people.
- 6. Use the equation to determine how many people are visiting if the cost is \$500.