Semester Review Topics

15. $\lim \frac{1+\sin (x)}{x}$ is $x \rightarrow 0^{+} \quad x$ (A) 0 (B) 1
 (C) 2
 (D) π
 (E) ∞

$\sin 5 x$
 \lim
 $x \rightarrow 0 \quad x$

Tangent Line

Find the equation of the line tangent to the curve $f(x)=x^{3}-4 x$ at $x=0$.

Increasing Functions

What are all values of x for which the function f defined by $f(x)=x^{3}-4 x$ are increasing

Inflection Points

Determine any points of inflection for the curve $f(x)=x^{3}-4 x$

Let f be the differentiable function whose graph is shown in the figure. The position, in meters, at time t (sec) of a particle moving along a horizontal coordinate axis is given by $s(t)=\int_{0}^{x} f(t) d t$ Use the graph of $f(x)$ below to answer the questions.
a. Find the velocity of the particle at $\mathrm{t}=2$.

Graph of f

Let f be the differentiable function whose graph is shown in the figure. The position, in meters, at time t (sec) of a particle moving along a horizontal coordinate axis is given by $s(t)=\int_{0}^{x} f(t) d t$ Use the graph of $f(x)$ below to answer the questions.
b. Find the acceleration of the particle at $\mathrm{t}=2$.

Graph of f

Let f be the differentiable function whose graph is shown in the figure. The position, in meters, at time t (sec) of a particle moving along a horizontal coordinate axis is given by $s(t)=\int_{0}^{x} f(t) d t$ Use the graph of $f(x)$ below to answer the questions.
c. Find the absolute maximum and minimum of $s(t)$ on the given interval.

Graph of f

Use the data below to approximate the area under the curve using the Trapezoid Rule with 4 subintervals.

t	0	2	5	9	10
$H(t)$	66	60	52	44	43

Use the data below to approximate the area under the curve using a Right Riemann Sum with 4 sub-intervals.

t	0	2	5	9	10
$H(t)$	66	60	52	44	43

Use the data below to approximate the area under the curve using a Left Riemann Sum with 4 sub-intervals.

t	0	2	5	9	10
$H(t)$	66	60	52	44	43

- Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time t, from $[0,6]$, is given by a differentiable function C , where t is measured in minutes. Selected values of $\mathrm{C}(\mathrm{t})$, measured in ounces, are given in the table.

t(minu tes)	0	1	2	3	4	5	6
C(t) ounces	0	5.3	8.8	11.2	12.8	13.8	14.5

- Use a midpoint sum with three subinterval of equal length indicated by the data in the table to approximate the value of

$$
\frac{1}{6} \int_{0}^{6} C(t) d t
$$

$t($ minu tes)	0	1	2	3	4	5	6
C(t) ounces	0	5.3	8.8	11.2	12.8	13.8	14.5

- Using correct units, explain the meaning of $\frac{1}{6} \int_{0}^{6} C(t) d t$ in the
context of the problem.

| $t($ minutes $)$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C}(\mathrm{t})$
 ounces | 0 | 5.3 | 8.8 | 11.2 | 12.8 | 13.8 | 14.5 |

- Find the value of $C^{\prime}(4.5)$
- Using correct units, explain the meaning of $C^{\prime}(4.5)$ in the context of the problem.

