

- 1a. Find the 3rd order Taylor polynomial for $f(x) = \ln(x+1)$ centered at x = 0.
- b. Then find the Lagrange Error Bound when x = .2
- 2a. Find the 3rd order Taylor polynomial for $f(x) = e^x$ centered at x = 0.
- b. Then use Taylors Inequality to find $||f(.4) P_1(.4)|| \le R$ at x = .4
- 3a. Find the 3rd order Taylor polynomial for $f(x) = \sin x$ centered at $x = \frac{\pi}{6}$.
- b. Then use the Remainder Estimation Thm to find $|f(x) P_3(x)| \le R$ at $x = 32^\circ$
- 4a. Find the 2nd order Taylor polynomial for $f(x) = \cos x$ centered at $x = \frac{\pi}{4}$.
- b. Then use the Remainder Estimation Thm to find $|f(x) P_2(x)| \le R$ at $x = 42^\circ$
- 5a. Find the 3rd order Taylor polynomial for $f(x) = \arcsin x$ centered at x = 0.
- b. Then find the Lagrange Error Bound when x = .2
- 6a. Find the 1st order Taylor polynomial for $f(x) = \frac{\ln x}{x}$ centered at x = 1.
- b. Then use Taylors Inequality to find $|f(1.2) P_1(1.2)| \le R$ at x = 1.2
- 7a. Find the 1st order Taylor polynomial for $f(x) = xe^{-2x}$ centered at x = 0.
- b. Then use Taylors Inequality to find $f(.2) P_3(.2) \le R$ at x = .2
- 8a. Find the 1st order Taylor polynomial for $f(x) = \sqrt{3 + x^2}$ centered at x = 1
- b. Then find the Lagrange Error Bound when x = 1.2

Determine a bound on the accuracy of the given approximation for the indicated range of x

9.
$$\sin x \approx x$$
, $x < .05$

10.
$$\sin x \approx x - \frac{x^3}{3!}$$
, $|x| < .15$

11.
$$\cos x \approx \frac{1}{2} - \frac{\sqrt{3}}{2} \left(x - \frac{\pi}{3} \right), \quad \left| x - \frac{\pi}{3} \right| < .05$$

12. tanx
$$\approx 1 + 2\left(x - \frac{\pi}{4}\right)$$
, $x - \frac{\pi}{4} < \frac{\pi}{36}$

13.
$$\sqrt[3]{1+x} \approx 1 + \frac{x}{3}$$
 $|x| < .025$

14.
$$lnx \approx (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3$$
, $|x-1| < ...1$

15.
$$\sqrt{1+x} \approx 1 + \frac{x}{2}$$
, $0 < x < .02$