Series

2016 BC 6
The function f has a Taylor series about $\mathrm{x}=1$ that converges to $\mathrm{f}(\mathrm{x})$ for all x in the interval of convergence. It is known that $\mathrm{f}(1)=1, f^{\prime}(1)=\frac{-1}{2}$, and the nth derivative of f at $\mathrm{x}=1$ is given by $f^{n}(1)=(-1)^{n} \frac{(n-1)!}{2^{n}}$ for $n \geq 2$.
a) Write the first 4 non-zero terms and the general term of the Taylor series for f about $\mathrm{x}=1$

2015 BC6

1. The Maclaurin series for a function f is given by $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{n} x^{n}=x-\frac{3}{2} x^{2}+3 x^{3}-\cdots+\frac{(-3)^{n-1}}{n} x^{n} \cdots$ and converges to $\mathrm{f}(\mathrm{x})$ for $|x|<R$, where R is the radius of convergence of the Maclaurin series.
a) Write the first four non-zero terms of the Maclaurin series for f^{\prime}, the derivative of f . Express f^{\prime} as a rational function for $|x|<R$.
b) Write the first four nonzero terms of the Maclaurin series for e^{x}. Use the Maclaurin series for e^{x} to write the third-degree polynomial for $\mathrm{g}(\mathrm{x})=\mathrm{e}^{\mathrm{x}} \mathrm{f}(\mathrm{x})$ about $\mathrm{x}=0$.

2014 BC6

6. The Taylor series for a function f about $\mathrm{x}=1$ is given by $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2^{n}}{n}(x-1)^{n}$ and converges to $\mathrm{f}(\mathrm{x})$ for $|x-1|<R$, where r is the radius of convergence of the Taylor series.
b) Find the first three nonzero terms and the general term of the Taylor series for f^{\prime}, the derivative of f, about $x=1$.
c) The Taylor series for f^{\prime} about $\mathrm{x}=1$, found in part (b), is a geometric series. Find the function f^{\prime} to which the series converges for $|x-1|<R$. Use this function to determine f for $|x-1|<R$.

2009 BC\#5

Consider the differential equation $\frac{d y}{d x}=6 x^{2}-x^{2} y$. Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be a particular solution to this differential equation with the initial condition $f(-1)=2$.

At the point $(-1,2)$, the value of $\frac{d^{2} y}{d x^{2}}$ is -12 . Find the second-degree Taylor Polynomial for f about $\mathrm{x}=-1$.

2009 BC\#6

The Maclaurin series for e^{x} is $e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots+\cdots \frac{x^{n}}{n!}+\cdots$. The continuous function f is defined by $f(x)=\frac{e^{(x-1)^{2}}-1}{(x-1)^{2}}$ for $\mathrm{x} \neq 1$ and $\mathrm{f}(1)=1$. The function has derivatives of all orders $\mathrm{x}=1$.
a. Write the first four nonzero terms and the general term of the Taylor series for $e^{(x-1)^{2}}$ about $x=1$.
b. Use the Taylor series found in part (a) to write the first four nonzero terms and the general term of the Taylor series for f about $x=1$.
c. Use the Taylor Series to determine whether the graph of f has any inflections points.

The function f is twice differentiable for $\mathrm{x}>0$ with $\mathrm{f}(1)=15$ and $f^{\prime \prime}(1)=20$. Values f^{\prime}, the derivative of f, are given for selected values of x in the table.

x	1	1.1	1.2	1.3	1.4
$f^{\prime}(x)$	8	10	12	13	14.5

a) Write the second-degree Taylor polynomial for f about $x=1$. Use the Taylor polynomial to approximate $f(1.4)$.

The function g has derivatives of all orders, and the Maclaurin series for g is $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+3}=\frac{x}{3}-\frac{x^{3}}{5}+\frac{x^{5}}{7}-\cdots$
a) Write the first three nonzero terms and the general term of the Maclaurin series for $g^{\prime}(x)$

2008 BC6 Form B

$6 c$. The derivative of $\ln \left(1+x^{2}\right)$ is $\frac{2 x}{1+x^{2}}$. Write the first four nonzero terms of the Taylor series for $\ln \left(1+x^{2}\right)$.

2006 FormB BC6

The function f is defined by $f(x)=\frac{1}{1+x^{3}}$.
a. Find the first four nonzero terms and general term for the Maclaurin series for f .
b. Find the first three nonzero terms and the general term for $f^{\prime}(x)$.

```
2013 BC6
```

A function f has derivatives of all orders at $\mathrm{x}=0$. Let $P_{n}(x)$ denote the nth-degree Taylor polynomial for f about $x=0$.
a) It is known that $\mathrm{f}(0)=-4$ and that $P_{1}\left(\frac{1}{2}\right)=-3$. Show that $f^{\prime}(0)=2$.
b) It is known that $f^{\prime \prime}(0)=\frac{-2}{3}$ and $f^{\prime \prime}(0)=\frac{1}{3}$. Find $P_{3}(x)$
c) The function h has first derivative given by $h^{\prime}(x)=f(2 x)$. It is known that $\mathrm{h}(0)=7$. Find the third degree Taylor polynomial for h about $\mathrm{x}=0$.

2011 BC6

Let $f(x)=\sin \left(x^{2}\right)+\cos x$.
a. Write the first four nonzero terms of the Taylor series for $\sin x$ about $x=0$, and write the first four nonzero terms of the Taylor series for $\sin \left(x^{2}\right)$ about $x=0$.
b. Write the first four nonzero terms of the Taylor series for $\cos x$ about $x=0$. Use this series and the series for $\sin \left(x^{2}\right)$, found in part a, to write the first four nonzero terms of the Taylor series for $f(x)$ about $x=0$.
c. Find the value of $f^{(6)}(0)$.
14. What is the approximation of the value of $\sin 1$ obtained by using the fifth-degree Taylor Polynomial about $\mathrm{x}=0$ for $\sin \mathrm{x}$?
(A) $1-\frac{1}{2}+\frac{1}{24}$
(B) $1-\frac{1}{2}+\frac{1}{4}$
(C) $1-\frac{1}{3}+\frac{1}{5}$
(D) $1-\frac{1}{4}+\frac{1}{8}$
(E) $1-\frac{1}{6}+\frac{1}{120}$
89. The graph of the function represented by the Maclaurin series $1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\cdots+\frac{(-1)^{n} x^{n}}{n!}+\cdots$ intersects the graph of $\mathrm{y}=\mathrm{x}^{3}$ at $\mathrm{x}=$
(A) .773
(B) .865
(C) .929
(D) 1.000
(E) 1.857
17. Let f be the function given by $\mathrm{f}(\mathrm{x})=\ln (3-\mathrm{x})$. The third degree Taylor polynomial for f about $\mathrm{x}=2$ is
(A) $-(x-2)+\frac{(x-2)^{2}}{2}-\frac{(x-2)^{3}}{3}$
(B) $-(\mathrm{x}-2)-\frac{(x-2)^{2}}{2}-\frac{(x-2)^{3}}{3}$
(C) $(\mathrm{x}-2)+(x-2)^{2}+(x-2)^{3}$
(D) $(\mathrm{x}-2)+\frac{(x-2)^{2}}{2}+\frac{(x-2)^{3}}{3}$
(E) $(\mathrm{x}-2)-\frac{(x-2)^{2}}{2}+\frac{(x-2)^{3}}{3}$
24. The Taylor series for $\sin \mathrm{x}$ about $\mathrm{x}=0$ is $x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots$ If f is a function such that $f^{\prime}(x)=\sin \left(x^{2}\right)$, then the coefficient of x^{7} in the Taylor series for $\mathrm{f}(\mathrm{x})$ about $\mathrm{x}=0$ is
(A) $\frac{1}{7!}$
(B) $\frac{1}{7}$
(C) 0
(D) $\frac{-1}{42}$
(E) $\frac{-1}{7!}$
77. Let $P(x)=3 x^{2}-5 x^{3}+7 x^{4}+3 x^{5}$ be the fifth-degree polynomial for the function f about $\mathrm{x}=0$. What is the value of $f^{\prime \prime \prime}(0)$?
A) -30
B) -15
C) -5
D) $\frac{-5}{6}$
E) $-\frac{1}{6}$
28. What is the coefficient of x^{2} in the Taylor Series $\frac{1}{(1+x)^{2}}$ about $\mathrm{x}=0$?
A) $\frac{1}{6}$
B. $\frac{1}{3}$
C) 1
D) 3
E) 6
20. A function f has Maclaurin series given by $\frac{x^{4}}{2!}+\frac{x^{5}}{3!}+\frac{x^{6}}{4!}+\cdots+\frac{x^{n+3}}{(n+1)!}+\cdots$. Which of the following is an expression for $\mathrm{f}(\mathrm{x})$?
A) $-3 x \sin x+3 x^{2}$
B) $-\cos \left(x^{2}\right)+1$
C) $-x^{2} \cos x+x^{2}$
D) $x^{2} e^{x}-x^{3}-x^{2}$
E) $e^{x^{2}}-x^{2}-1$
11. The Maclaurin series for $\frac{1}{1-x}$ is $\sum_{n=0}^{\infty} x^{n}$. Which of the following is a power series expansion for $\frac{x^{2}}{1-x^{2}}$?
A) $1+x^{2}+x^{4}+x^{6}+x^{8}+\cdots$
B) $x^{2}+x^{3}+x^{4}+x^{5}+\cdots$
C) $x^{2}+2 x^{3}+3 x^{4}+4 x^{5}+\cdots$
D) $x^{2}+x^{4}+x^{6}+x^{8}+\cdots$
E) $x^{2}-x^{4}+x^{6}-x^{8}+\cdots$
23. If $\mathrm{f}(\mathrm{x})=\mathrm{x} \sin (2 \mathrm{x})$, which of the following is the Taylor Series for f about $\mathrm{x}=0$?
A) $\mathrm{x}-\frac{x^{3}}{2!}+\frac{x^{5}}{4!}-\frac{x^{7}}{6!}+\cdots$
B) $\mathrm{x}-\frac{4 x^{3}}{2!}+\frac{16 x^{5}}{4!}-\frac{64 x^{7}}{6!}+\cdots$
C) $2 \mathrm{x}-\frac{8 x^{3}}{3!}+\frac{32 x^{5}}{5!}-\frac{128 x^{7}}{7!}+\cdots$
D) $2 \mathrm{x}^{2}-\frac{2 x^{4}}{3!}+\frac{2 x^{6}}{5!}-\frac{2 x^{8}}{7!}+\cdots$
E) $2 \mathrm{x}^{2}-\frac{8 x^{4}}{3!}+\frac{32 x^{6}}{5!}-\frac{128 x^{8}}{7!}+\cdots$
84. Let f be a function with $\mathrm{f}(3)=2, f^{\prime}(3)=-1, f^{\prime \prime}(3)=6$, and $\mathrm{f}^{\prime \prime \prime}(3)=12$. Which of the following is the the third degree Taylor Polynomial for f about $\mathrm{x}=3$?
A) $2-(x-3)+3(x-3)^{2}+2(x-3)^{3}$
B) $2-(\mathrm{x}-3)+3(\mathrm{x}-3)^{2}+4(x-3)^{3}$
C) $2-(\mathrm{x}-3)+6(\mathrm{x}-3)^{2}+12(x-3)^{3}$
D) $2-x+3 x^{2}+2 x^{3}$
E) $2-\mathrm{x}+6 \mathrm{x}^{2}+12 \mathrm{x}^{3}$

