Error

83. The Taylor Series for $\ln \mathrm{x}$, centered at $\mathrm{x}=1$, is $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-1)^{n}}{n}$. Let f be the function given by the sum of the first three nonzero terms of this series. The maximum value of $|\ln x-f(x)|$ for $.3 \leq x \leq 1.7$ is
(A) .030
(B) .039
(C) .145
(D) .153
(E) . 529

2010 BC \#6

The Taylor series $g(x)=1-\frac{x}{2!}+\frac{x^{3}}{3 \cdot 4!}-\frac{x^{5}}{5 \cdot 6!}$ about $\mathrm{x}=0$, evaluated at $\mathrm{x}=1$, is an alternating series with individual terms that decrease in absolute value to 0 . Use the third degree polynomial to Estimate the value of $\mathrm{g}(1)$. Explain why this estimate differs from the actual value of $\mathrm{g}(1)$ by less than $\frac{1}{6!}$.

2012 \#6
The function g has derivatives of all orders, and the Maclaurin series for g is
$\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+3}=\frac{x}{3}-\frac{x^{3}}{5}+\frac{x^{5}}{7}-\cdots$
a) The Maclaurin series for g evaluated at $x=\frac{1}{2}$ is an alternating series whose terms decrease in absolute value to 0 . The approximation for $g\left(\frac{1}{2}\right)$ using the first two nonzero terms of this series is $\frac{17}{120}$. Show that this approximation differs from $g\left(\frac{1}{2}\right)$ by less than $\frac{1}{200}$.

Let $f(x)=\sin \left(x^{2}\right)+\cos x$. The graph of $y=\left|f^{(5)}(x)\right|$ is shown.

Let $\mathrm{P}_{4}(\mathrm{x})$ be the fourth degree Taylor polynomial for f about $\mathrm{x}=0$. Using information from the graph of $y=\left|f^{(5)}(x)\right|$, shown above, show that $\left|P_{4}\left(\frac{1}{4}\right)-f\left(\frac{1}{4}\right)\right|<\frac{1}{3000}$.

2008 BC 6 Form B
6. The first 4 nonzero terms of the Taylor Series for $\ln \left(1+\mathrm{x}^{2}\right)$ are $x^{2}-\frac{1}{2} x^{4}+\frac{1}{3} x^{6}-\frac{1}{4} x^{8}$
d. Use this series to find a rational number A such that $\left|A-\ln \left(\frac{5}{4}\right)\right|<\frac{1}{100}$. Justify your answer.

2007 BC6
6. The first four nonzero terms of the Taylor series for $\int_{0}^{x} e^{-t^{2}} d t$ about $\mathrm{x}=0$ is $x-\frac{x^{3}}{3}+\frac{x^{5}}{10}-\frac{x^{7}}{42}$.
c. Find $\int_{0}^{1 / 2} e^{-t^{2}} d t$ using the first 2 terms.
d. Explain why the estimate found in part c , differs from the actual value of $\int_{0}^{1 / 2} e^{-t^{2}} d t$ by less than $\frac{1}{200}$.

2006 FormB BC6

The function f is defined by $f(x)=\frac{1}{1+x^{3}}$.
c. Find the first four nonzero terms and the general term for the Maclaurin series representing $\int_{0}^{x} f(t) d t$.
D. Use the first three nonzero terms of the infinite series found in part (C) to approximate $\int_{0}^{1 / 2} f(t) d t$. What are the properties of the terms of the series representing $\int_{0}^{1 / 2} f(t) d t$ that this approximation is within $\frac{1}{10000}$ of the exact value of the integral.

