Chapter 7

Review Video

p. $386 \# 4 \quad v(t)=6 \mathrm{t}^{2}-18 \mathrm{t}+12 \quad 0 \leq t \leq 2$
a. Determine when the particle is moving to the right, to the left, and stopped
p. $386 \# 4 \quad \mathrm{v}(\mathrm{t})=6 \mathrm{t}^{2}-18 \mathrm{t}+12 \quad 0 \leq t \leq 2$
b. Find the particle's displacement for the given time interval.
p. $386 \# 4 \quad \mathrm{v}(\mathrm{t})=6 \mathrm{t}^{2}-18 \mathrm{t}+12 \quad 0 \leq t \leq 2$
c. If $s(0)=3$, what is the particle's final position?
p. $386 \# 4 \quad \mathrm{v}(\mathrm{t})=6 \mathrm{t}^{2}-18 \mathrm{t}+12 \quad 0 \leq t \leq 2$
d. Find the total distance traveled by the particle.

p. 386 \#12-16

12. Below is the velocity graph of a function. What is the particle's displacement between $t=0$ and $t=c$

p. 386 \#12-16

13. Below is the velocity graph of a function. What is the total distance traveled between $t=0$ and $t=c$

p. 386 \#12-16

14. Below is the velocity graph of a function. Give the positions of the particle at times a, b, and c if $s(0)=15$.

p. 386 \#12-16

15. Below is the velocity graph of a function. Approximately where does the particle achieve its greatest positive acceleration on

p. 386 \#12-16

15. Below is the velocity graph of a function. Approximately where does the particle achieve its greatest positive acceleration on the

