Chapter 6 Part 1

Test Review

At the beginning of 2010, a landfill contained 2200 tons of solid waste. The increasing function W models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation $\frac{d w}{d t}=\frac{1}{20}(W-200)$ for the next 20 years. W is measured in tons, t is ${ }^{d t}$ measured in years from the start of 2010.
Use the line tangent to the graph of W at $\mathrm{t}=0$ to approximate the amount of solid waste that the landfill contains at the end of the first 6 months of $2010\left(t=\frac{1}{2}\right)$

At the beginning of 2010, a landfill contained 2200 tons of solid waste. The increasing function W models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation $\frac{d w}{d t}=\frac{1}{20}(W-200)$ for the next 20 years. W is measured in tons, t is measured in years from the start of 2010. Find $\frac{d^{2} w}{d t^{2}}$ in terms of W . Use $\frac{d^{2} w}{d t^{2}}$ to determine whether your answer in part a is an underestimate or an overestimate of the amount of solid waste that the landfill contains at time $\left(t=\frac{1}{2}\right)$

At the beginning of 2010, a landfill contained 2200 tons of solid waste. The increasing function W models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation $\frac{d w}{d t}=\frac{1}{20}(W-200)$ for the next 20 years. W is measured in tons, t is ${ }^{d t}$ measured in years from the start of 2010.

Find the particular solution $\mathrm{W}=\mathrm{W}(\mathrm{t})$ to the differential equation

$$
\frac{d w}{d t}=\frac{1}{20}(W-200) \text { with initial condition } W(0)=2200 .
$$

Consider the differential equation $\quad \frac{d y}{d x}=x^{3}(y-1)$
On the axis provided, sketch a slope field for the given differential equation at the twelve points indicated. Then sketch a possible solution through the point $(0,2)$.

Consider the differential equation $\frac{d y}{d x}=x^{3}(y-1)$
Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(0)=0$.

Consider the differential equation $\quad \frac{d y}{d x}=x^{3}(y-1)$

- Use Euler's Method, starting at $\mathrm{f}(0)=0$, with 2 steps of equal size to approximate $f(1)$. Show the computations that lead to your answer.

Let f be the differentiable function whose graph is shown in the figure. The position, in meters, at time t (sec) of a particle moving along a horizontal coordinate axis is given by $s(t)=\int_{0}^{x} f(t) d t$ Use the graph of $f(x)$ below to answer the questions.
a. Find the velocity of the particle at $\mathrm{t}=4$.

Graph of f

Let f be the differentiable function whose graph is shown in the figure. The position, in meters, at time t (sec) of a particle moving along a horizontal coordinate axis is given by $s(t)=\int_{0}^{x} f(t) d t$ Use the graph of $f(x)$ below to answer the questions.
b. Find the position of the particle at $t=4$.

Graph of f

Let f be the differentiable function whose graph is shown in the figure. The position, in meters, at time t (sec) of a particle moving along a horizontal coordinate axis is given by $s(t)=\int_{0}^{x} f(t) d t$ Use the graph of $f(x)$ below to answer the questions.
c. At what time does $s(t)$ attain its absolute minimum and maximum value? Justify your answer.

Graph of f

Let f be the differentiable function whose graph is shown in the figure. The position, in meters, at time t (sec) of a particle moving along a horizontal coordinate axis is given by $s(t)=\int_{0}^{x} f(t) d t$ Use the graph of $f(x)$ below to answer the questions.
d. For what values of t is the particle moving to the right? Justify your answer.

Graph of f

Let f be the differentiable function whose graph is shown in the figure. The position, in meters, at time t (sec) of a particle moving along a horizontal coordinate axis is given by $s(t)=\int_{0}^{x} f(t) d t$ Use the graph of $f(x)$ below to answer the questions.
e. Approximately when is the acceleration of the particle negative? Justify your answer.

Graph of f

Let f be the differentiable function whose graph is shown in the figure. The position, in meters, at time t (sec) of a particle moving along a horizontal coordinate axis is given by $s(t)=\int_{0}^{x} f(t) d t$ Use the graph of $f(x)$ below to answer the questions.
f. Write the equation of the line tangent to $\mathrm{s}(\mathrm{t})$ at $\mathrm{t}=4$.

Graph of f

Let f be the differentiable function whose graph is shown in the figure. The position, in meters, at time t (sec) of a particle moving along a horizontal coordinate axis is given by $s(t)=\int_{0}^{x} f(t) d t$ Use the graph of $\mathrm{f}(\mathrm{x})$ below to answer the questions.
g. Determine any points of inflection for the graph of $s(t)$. Justify your answer.

Graph of f

Solve the initial value problem given below

$$
\frac{d y}{d x}=\frac{2-x^{2}}{3 y} \quad \text { and } y(0)=1
$$

Solve the initial value problem given below

$$
\frac{d y}{d x}=y+2 \quad \text { and } y(0)=2
$$

Find the general solution to the differential equation given below

$$
\frac{d y}{d x}=x^{2}+\frac{1}{x^{5}}
$$

Find the general solution to the differential equation given below
p. 327 \#1

$$
\frac{d y}{d x}=5 x^{4}-\sec ^{2} x
$$

Find the general solution to the differential equation given below
p. 327 \#3
$\frac{d y}{d x}=\sin x-e^{-x}+8 x^{3}$

Find the general solution to the differential equation given below

$$
\frac{d y}{d x}=\frac{1}{1+x^{2}}-\frac{1}{\sqrt{x}}
$$

Find the general solution to the differential equation given below
p. 3267

$$
\frac{d y}{d x}=3 x^{2} \cos \left(x^{3}\right)
$$

Find the general solution to the differential equation given below
p. 32610
$\frac{d y}{d x}=4(\sin x)^{3} \cos x$

Solve the initial value problem p. 32612

$$
\frac{d y}{d x}=2 e^{x}-\cos x \quad \text { and } y(0)=3
$$

Solve the initial value problem p. 32613

$$
\frac{d y}{d x}=7 x^{6}-3 x^{2}+5 \quad \text { and } y(1)=1
$$

Solve the initial value problem p. 32613

$$
\frac{d y}{d x}=\frac{-1}{x^{2}}-\frac{3}{x^{4}}+12 \quad \text { and } y(1)=3
$$

Multiple-Choice Questions

A graphing calculator is required for some questions.

1. Which is the slope field for the differential equation $\frac{d y}{d x}=2 y-4$?
(A)

(B)

(C)

(D)

(E)

