Chapter 5

Test Review

(p. 282 #7)

(p. 316 #26)

 $\int_{1}^{2} \left(x + \frac{1}{x^2} \right) dx =$

(p. 316 #27)

 $\int_{-\pi}^{0} (\sec x \tan x) dx =$

Use properties of integrals to answer the following (p. 290 #1)

$$\int_{1}^{2} f(x) \, dx = -4 \quad \int_{1}^{5} f(x) \, dx = 6 \quad \int_{1}^{5} g(x) \, dx = 8$$

$$a) \int_2^2 g(x) \, dx =$$

$$b. \int_5^1 g(x) \, dx =$$

e.
$$\int_{1}^{5} \left[f(x) - g(x) \right] dx =$$

Use properties of integrals to answer the following (p. 290 #1)

$$\int_{1}^{2} f(x) \, dx = -4 \quad \int_{1}^{5} f(x) \, dx = 6 \quad \int_{1}^{5} g(x) \, dx = 8$$

d.
$$\int_2^5 f(x) \, dx =$$

Use properties of integrals to answer the following (p. 286 Ex. 1)

$$\int_{-1}^{1} f(x) \, dx = 5 \quad \int_{1}^{4} f(x) \, dx = -2 \quad \int_{-1}^{1} h(x) \, dx = 7$$

e.
$$\int_{-1}^{1} \left[2f(x) + 3h(x) \right] dx =$$

Find the average value of the function using antiderivatives p. 291 32

Find dy/dx

p. 302 15

Find dy/dx

p. 302 20

Find the average value of $\sqrt{\cos x}$ on the interval [-1,1] p. 303 52

p.30357

with domain [0,12] graphed here.

The position at time t(sec) of a particle moving

along a coordinate axis is $s = \int_0^t f(x) dx$

p.304 58

The position at time t(sec) of a particle moving

along a coordinate axis is $s = \int_0^t f(x) dx$

b) Is the acceleration at time t = 5 positive or negative? y = f(t) y = f(t) $(3,3)_{0}$ $(2,2)_{0}$ $(5,2)_{1}$ $(1,1)_{1}$ $(1,1)_{1}$ $(1,1)_{1}$ $(1,1)_{1}$ $(1,1)_{1}$ $(1,1)_{1}$ $(1,1)_{1}$ $(1,2)_{1}$ $(1,1)_{1}$ $(1,2)_{1}$ $(1,1)_{1}$ $(1,2)_{1}$ $(1,2)_{1}$ $(2,2)_{1}$ $(3,3)_{0}$ $(5,2)_{1}$ $(5,2)_{2}$ $(5,2)_{2}$

The position at time t(sec) of a particle moving

along a coordinate axis is $s = \int_0^t f(x) dx$ c) What is the particles position at time t = 3? y = f(t)(3, 3)(5, 2)(1, 1)5 4 3

The position at time t(sec) of a particle moving

The position at time t(sec) of a particle moving

along a coordinate axis is $s = \int_0^t f(x) dx$ e) Approximately when is acceleration 0? y = f(t)(3, 3)(5, 2)(1, 1)5 4 3

The position at time t(sec) of a particle moving

The position at time t(sec) of a particle moving

along a coordinate axis is $s = \int_0^t f(x) dx$ g) On which side of the origin does the particle y = f(t)lie at time t = 9?(3, 3)(5, 2)(1, 1)5 4 3

(p. 291 #19)

 $\int_{\pi}^{2\pi} \sin x \, dx =$

(p. 291 #20)

(p. 291 #21)

(p. 291 #30)

 $\int_{1}^{4} -x^{2} dx =$

Use the data below to approximate the area under the curve using the Trapezoid Rule with 4 subintervals.

t	0	2	5	9	10
H(t)	66	60	52	44	43

Use the data below to approximate the area under the curve using a Right Riemann Sum with 4 sub-intervals.

t	0	2	5	9	10
H(t)	66	60	52	44	43

Use the data below to approximate the area under the curve using a Left Riemann Sum with 4 sub-intervals.

t	0	2	5	9	10
H(t)	66	60	52	44	43

 Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time t, from [0, 6], is given by a differentiable function C, where t is measured in minutes. Selected values of C(t), measured in ounces, are given in the table.

t(minu	0	1	2	3	4	5	6
tes)							
C(t)	0	5.3	8.8	11.2	12.8	13.8	14.5
ounces							

t(minu	0	1	2	3	4	5	6
tes)							
C(t)	0	5.3	8.8	11.2	12.8	13.8	14.5
ounces							

• Use a midpoint sum with three subinterval of equal length indicated by the data in the table to approximate the value of $\frac{1}{6}\int_{0}^{6}C(t)dt$.

t(minu tes)	0	1	2	3	4	5	6
C(t) ounces	0	5.3	8.8	11.2	12.8	13.8	14.5

Using correct units, explain the meaning of context of the problem.

$$\frac{1}{6}\int_0^6 C(t)dt$$
 in the