Chapter 5

Test Review

Evaluate the integral.
(p. 282 \#7)
$\int_{-2}^{1} 5 d x=$

Evaluate the integral.
(p. 316 \#26)

$$
\int_{1}^{2}\left(x+\frac{1}{x^{2}}\right) d x=
$$

Evaluate the integral. (p. 316 \#27)

$$
\int_{\frac{-\pi}{3}}^{0}(\sec x \tan x) d x=
$$

Use properties of integrals to answer the

 following(p. 290 \#1)
$\int_{1}^{2} f(x) d x=-4 \int_{1}^{5} f(x) d x=6 \int_{1}^{5} g(x) d x=8$

$$
\text { a) } \int_{2}^{2} g(x) d x=\quad \text { b. } \int_{5}^{1} g(x) d x=
$$

$$
\text { e. } \int_{1}^{5}[f(x)-g(x)] d x=
$$

Use properties of integrals to answer the following (p. 290 \#1)
$\int_{1}^{2} f(x) d x=-4 \int_{1}^{5} f(x) d x=6 \int_{1}^{5} g(x) d x=8$
d. $\int_{2}^{5} f(x) d x=$

Use properties of integrals to answer the

 following (p. 286 Ex. 1)$$
\int_{-1}^{1} f(x) d x=5 \int_{1}^{4} f(x) d x=-2 \int_{-1}^{1} h(x) d x=7
$$

$$
\text { a) } \int_{4}^{1} f(x) d x=\quad \text { b. } \int_{-1}^{4} f(x) d x=
$$

$$
\text { e. } \int_{-1}^{1}[2 f(x)+3 h(x)] d x=
$$

Find the average value of the function using antiderivatives
p. 29132

$$
y=\frac{1}{x}
$$

$$
[\mathrm{e}, 2 \mathrm{e}]
$$

Find $d y / d x$
p. 30215

$$
y=\int_{x^{3}}^{5} \frac{\cos t}{t^{2}+2} d t
$$

Find $d y / d x$
p. 30220

$$
y=\int_{\sin x}^{\cos x} t^{2} d t
$$

Find the average value of $\sqrt{\cos x}$ on the interval [-1,1]
p. 30352

$H(x)=\int_{0}^{x} f(t) d t$, where f is the continuous function p. 30357

 with domain $[0,12]$ graphed here.
a) Find $\mathrm{H}(0)$.

$H(x)=\int_{0}^{x} f(t) d t$, where f is the continuous function p. 30357 with domain $[0,12]$ graphed here.
b) On what interval is H increasing. Explain

```
\[
y=f(x)
\]
```

$H(x)=\int_{0}^{x} f(t) d t$, where f is the continuous function p. 30357 with domain $[0,12]$ graphed here.

$H(x)=\int_{0}^{x} f(t) d t$, where f is the continuous function p. 30357 with domain $[0,12]$ graphed here.
d) Is $\mathrm{H}(12)$ positive or negative. Explain

```
\[
y=F(0)
\]
```


$H(x)=\int_{0}^{x} f(t) d t$, where f is the continuous function p. 30357 with domain $[0,12]$ graphed here.

$$
y=f(x)
$$

$H(x)=\int_{0}^{x} f(t) d t$, where f is the continuous function p. 30357 with domain $[0,12]$ graphed here.
$\left.\boldsymbol{e}_{6}\right)$ Where does H achieve its minimum value. Explain
f is the differentiable function whose graph is shown.
p. 30458 The position at time $t(\mathrm{sec})$ of a particle moving along a coordinate axis is $s=\int_{0}^{t} f(x) d x$
 $\mathrm{y}=\mathrm{ft}(\mathrm{t}$

f is the differentiable function whose graph is shown.
p. 30458 The position at time $\mathrm{t}(\mathrm{sec})$ of a particle moving along a coordinate axis is $s=\int_{0}^{t} f(x) d x$ b) Is the acceleration at time $\mathrm{t}=5$ positive or negative?

f is the differentiable function whose graph is shown.
p. 30458 The position at time $t(\mathrm{sec})$ of a particle moving along a coordinate axis is $s=\int_{0}^{t} f(x) d x$

f is the differentiable function whose graph is shown.
p. 30458 The position at time $\mathrm{t}(\mathrm{sec})$ of a particle moving along a coordinate axis is $s=\int_{0}^{t} f(x) d x$
d) At what time during the first 9 seconds does

f is the differentiable function whose graph is shown.
p. 30458 The position at time $t(\mathrm{sec})$ of a particle moving along a coordinate axis is $s=\int_{0}^{t} f(x) d x$

f is the differentiable function whose graph is shown.
p. 30458 The position at time $\mathrm{t}(\mathrm{sec})$ of a particle moving along a coordinate axis is $s=\int_{0}^{t} f(x) d x$ f) When is the particle moving toward the origin?

f is the differentiable function whose graph is shown.
p. 30458 The position at time $\mathrm{t}(\mathrm{sec})$ of a particle moving along a coordinate axis is $s=\int_{0}^{t} f(x) d x$
 $y=f(t)$ lie at time $\mathrm{t}=9$?

Evaluate the integral.
(p. 291 \#19)
$\int^{2 \pi}$
$\sin x d x=$

Evaluate the integral.
(p. 291 \#20)
$\int_{0}^{\pi / 2} \cos x d x=$

Evaluate the integral.
(p. 291 \#21)
$\int_{0}^{1} e^{x} d x=$

Evaluate the integral.
(p. 291 \#30)
$\int_{1}^{4}-x^{2} d x=$

Use the data below to approximate the area under the curve using the Trapezoid Rule with 4 subintervals.

t	0	2	5	9	10
$H(t)$	66	60	52	44	43

Use the data below to approximate the area under the curve using a Right Riemann Sum with 4 sub-intervals.

t	0	2	5	9	10
$H(t)$	66	60	52	44	43

Use the data below to approximate the area under the curve using a Left Riemann Sum with 4 sub-intervals.

t	0	2	5	9	10
$H(t)$	66	60	52	44	43

- Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time t, from $[0,6]$, is given by a differentiable function C , where t is measured in minutes. Selected values of $\mathrm{C}(\mathrm{t})$, measured in ounces, are given in the table.

t(minu tes)	0	1	2	3	4	5	6
C(t) ounces	0	5.3	8.8	11.2	12.8	13.8	14.5

- Use a midpoint sum with three subinterval of equal length indicated by the data in the table to approximate the value of

$$
\frac{1}{6} \int_{0}^{6} C(t) d t
$$

$t($ minu tes)	0	1	2	3	4	5	6
C(t) ounces	0	5.3	8.8	11.2	12.8	13.8	14.5

- Using correct units, explain the meaning of $\frac{1}{6} \int_{0}^{6} C(t) d t$ in the
context of the problem.

