Derivative Review Part 1

3.3,3.5,3.6,3.8,3.9

Find the derivative of the function

 p. 181 \#11) $\mathrm{y}=\mathrm{x}^{5}-\frac{1}{8} x^{2}+\frac{1}{4} x$

Find the derivative of the function

 p. 181 \#33) $y=2 \sin x \cos x$

Find the derivative of the function

 p. 181 \#33) $y=2 \sin x \cos x$

Find the derivative of the function

 p. 181 \#44) $y=\frac{2 x+1}{2 x-1}$

Find the derivative of the function

p. 124 \#4
2) $y=\frac{x^{3}}{3}-x$

Find the horizontal tangent to curve

 p. 124 \#77) $y=x^{3}-2 x^{2}+x+1$

Find the derivative of the function

 p. 124 \#1313) $\mathrm{y}=(x+1)\left(x^{2}+1\right)$

Find the derivative of the function

 p. 124 \#1313) $\mathrm{y}=(x+1)\left(x^{2}+1\right)$

Find the derivative of the function

 p. 124 \#1717) $\mathrm{y}=\frac{2 x+5}{3 x-2}$

Find the derivative of the function

 p. 124 \#2929) $y=4 x^{-2}-8 x+1$

Find the derivative of the function

p. 124 \#30
30) $\mathrm{y}=\frac{x^{-4}}{4}-\frac{x^{-3}}{3}+\frac{x^{-2}}{2}-x^{-1}+1$
a) Find all points where f has horizontal tangents
p. 126 Quick Quiz 4
$f(x)=x^{4}-4 x^{2}$
a) Find an equation of the tangent line at $x=1$.
p. 126 Quick Quiz 4
$f(x)=x^{4}-4 x^{2}$
b) Find an equation of the normal line at $x=1$.
p. 126 Quick Quiz 4
$f(x)=x^{4}-4 x^{2}$

Find $\frac{d y}{d x}$
$y=x \sec x$

Find $\frac{d y}{d x}$
p. 1466
$y=3 x+x \tan x$
Find $\frac{d y}{d x}$
p. 1468
x
$y=\overline{1+\cos x}$
Find $\frac{d y}{d x}$
p. 1468
x
$y=\overline{1+\cos x}$

Find $\frac{d y}{d x}$
$y=\sin ^{3} x \tan 4 x$

Find $\frac{d y}{d x}$
p. 15319

3
$y=\frac{3}{\sqrt{2 x+1}}$

Find $\frac{d y}{d x}$
p. 15321
$y=\sin ^{2}(3 x-2)$

Find $\frac{d y}{d x}$
$y=\sqrt{\tan 5 x}$

Find $\frac{d y}{d x}$

Extra Practice

$y=\sqrt{\tan \sqrt{5 x}}$

Find the derivative of y with respect to the given variable
p. 156 Quick Quiz \#1
$y=\sin ^{4}(3 x)$

Find the derivative of y with respect to the given variable

p. 170 \#3

$y=\sin ^{-1} \sqrt{2 t}$

Find the derivative of y with respect to the given variable

Extra Practice
$y=\sin ^{-1} \sqrt{2 t}$

Find the derivative of y with respect to the given variable
p. 170 \# 21
$y=\tan ^{-1} \sqrt{x^{2}-1}+\csc ^{-1} x$

Find $\frac{d y}{d x}$
p. 178 \#8
$y=x^{2} e^{x}-x e^{x}$

Find $\frac{d y}{d x}$
p. 178 \#13
$y=3^{\csc x}$

Find $\frac{d y}{d x}$

$y=(\ln x)^{2}$

Find $\frac{d y}{d x}$
p. 178 \#19
$y=\ln (\ln x)$

Find $\frac{d y}{d x}$
p. 178 \#21
$y=\log _{4} x^{2}$

Find the derivative of the function

$$
\text { p. } 181 \text { \#8 }
$$

$y=x \sqrt{2 x+1}$

Find the derivative of the function

$$
\text { p. } 181 \text { \#11 }
$$

$y=x^{2} \csc x$

Find the derivative of the function

p. 181 \#17
$y=\ln (\arccos x)$

Find the derivative of the function

$$
\text { p. } 181 \text { \#24 }
$$

$y=\arcsin \sqrt{1-x^{2}}$

Find the derivative of the function

$$
\begin{aligned}
& \text { p. } 182 \# 30 \\
& y=\left(\frac{1+\sin x}{1-\cos x}\right)^{2}
\end{aligned}
$$

p. 183 \#67d

Suppose that the functions f and g and their first derivatives have the following values at $x=-1$ and $x=0$ Find the first derivative of the following
$\frac{d}{d x} f(g(x))$ at $\mathrm{x}=-1$

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
-1	0	-1	2	1
0	-1	-3	-2	4

1. Let f be a differentiable function such that $f(3)=15, f(6)=3, f^{\prime}(3)=-8$ and $f^{\prime}(6)=-2$.
The function g is differentiable and $\mathrm{g}(\mathrm{x})=\mathrm{f}^{-1}(\mathrm{x})$ for all x . What is the value of $g^{\prime}(15)$?
$\begin{array}{llll}\text { a) }-1 / 2 & \text { b) }-1 / 8 & \text { c) } 1 / 6 & \text { d) } 1 / 3\end{array}$
e) The value of $g^{\prime}(15)$ cannot be determined
2. If $f(2)=-3, \mathrm{f}^{\prime}(2)=\frac{4}{3}$, and $\mathrm{g}(\mathrm{x})=\mathrm{f}^{-1}(x)$,
what is the equation of the tangent line to $g(x)$ at $\mathrm{x}=-3$?
A) $y-2=\frac{-3}{4}(x+3)$
B) $y+2=\frac{-3}{4}(x-3)$
C) $y-2=\frac{3}{4}(x+3)$
D) $y+3=\frac{3}{4}(x-2)$
E) $y-2=\frac{4}{3}(x+3)$
p. 92 \#11

Find the equation of the tangent and normal line to the curve at the given point

$$
y=\frac{1}{x-1} \quad \text { at } x=2
$$

p. 92 \#11

Find the equation of the tangent and normal line to the curve at the given point

$$
y=x^{2}-3 x-1 \quad \text { at } x=0
$$

p. 182 \#51

Find the equation for the line tangent to the curve at the given value of t
$x=3 \sec t \quad y=5 \tan t \quad$ at $\mathrm{t}=\frac{\pi}{6}$

p. 535 \#25

Find the points at which the tangent line to the curve is horizontal and/or vertical

$$
x=2-t y=t^{3}-4 \mathrm{t}
$$

1. A curve C is defined by the parametric equations $x=t^{2}-4 t+1$ and $y=t^{3}$. Find the equation of the line tangent to the graph of C at the point $(1,64)$?
2. If $f(x)=(\ln x)^{2}$, then, $f^{\prime \prime}\left(e^{2}\right)=$
3. A curve C is defined by the parametric equations $x=t^{2}-4 t+1$ and $y=t^{3}$. Find the equation of the line tangent to the graph of C at the point $(-2,27)$?
4. Let h be a differentiable function, defined by $f(x)=h\left(x^{3}-4\right)$. Find $f^{\prime}(3)$.
