At the indicated point set-up the equation using the definition of the derivative to find the slope of the curve at that point. f(x) = f(x)

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

1.
$$y = x^2 - 4x$$
 at $x = 2$ 2. $y = \frac{1}{x-1}$ at $x = 3$

3.
$$y = x^2 - 3x - 1$$
 at $x = 1$ 4. $y = x^3 + 1$ at $x = 4$

At the indicated point set-up the equation using the definition of the derivative to find the slope of the curve at that point.

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

1.
$$y = x^2 - 4x$$
 at $x = 2$ 2. $y = \frac{1}{x-1}$ at $x = 3$

3.
$$y = x^2 - 3x - 1$$
 at $x = 1$ 4. $y = x^3 + 1$ at $x = 4$

At the indicated point set-up the equation using the following definition of the derivative

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

then use the substitution $\mathbf{h} = \mathbf{x} - \mathbf{a}$ to put the derivative in the following form $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

1.
$$y = x^2 - 4x$$
 at $x = 2$ 2. $y = \frac{1}{x-1}$ at $x = 3$

3.
$$y = x^2 - 3x - 1$$
 at $x = 1$ 4. $y = x^3 + 1$ at $x = 4$