
Sketch the graph of the derivative given the original function
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Sketch the graph of the derivative given the original function



p. 106 27

• Sketch the graph of a continuous function f 
with f(0) = -1 and 
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• Sketch the graph of a continuous function f 
with f(0) = 1 and 
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p. 136 8

The number of gallons of water in a tank t 
minutes after the tank has started to drain is 
z(t) = 200(30 – t)2.  How fast is the water 
running out at the end of 10 minutes?



p. 136 8

The number of gallons of water in a tank t 
minutes after the tank has started to drain is                              
z(t) = 200(30 – t)2.  What is the average rate at 
which the water flows out during the first 10 
minutes?



p. 136 #9

a.  When does the particle move forward?  Move backward?



p. 136 #9

a.  When does the particle speed up?  Slow down?



p. 136 #9

b.  When is the particle’s acceleration positive?  Negative?  Zero?  



p. 136 #9

c.  When does the particle move at its greatest speed?



p. 136 #9

d.  When is the particle at rest?



p. 136 #10

a.  When is the particle moving to the left?  Moving to the right? 
Standing Still



p. 136 #10

b.  Graph the particles velocity.



p. 136 #10

b.  Graph the particles speed.



p. 136 #11

a.  When does the particle reverse direction?



p. 136 #11

b.  When is the body moving at a constant speed?



p. 136 #11

c.  Graph the body’s speed.



p. 136 #11

d.  Graph the acceleration, where defined.



p. 137 19 a - e

• A particle moves along a line so that its 
position at any time t > 0 is given by the 
function s(t) = t2 – 3t + 2, where is measured 
in meters and t is measured in seconds.

a) Find the displacement during the first 5 
seconds.



p. 137 19 a - e

• A particle moves along a line so that its 
position at any time t > 0 is given by the 
function s(t) = t2 – 3t + 2, where is measured 
in meters and t is measured in seconds.

b) Find the average velocity during the first 5 
seconds.



p. 137 19 a - e

• A particle moves along a line so that its 
position at any time t > 0 is given by the 
function s(t) = t2 – 3t + 2, where is measured 
in meters and t is measured in seconds.

c) Find the instantaneous velocity when t = 4



p. 137 19 a - e

• A particle moves along a line so that its 
position at any time t > 0 is given by the 
function s(t) = t2 – 3t + 2, where is measured 
in meters and t is measured in seconds.

d) Find the acceleration when t = 4



p. 137 19 a - e

• A particle moves along a line so that its 
position at any time t > 0 is given by the 
function s(t) = t2 – 3t + 2, where is measured 
in meters and t is measured in seconds.

e) At what values does the particle change 
direction



p. 137 19 a - e

• A particle moves along a line so that its 
position at any time t > 0 is given by the 
function s(t) = t2 – 3t + 2, where is measured 
in meters and t is measured in seconds.

g) Describe the motion



p. 137 23

• The position of a body at time t sec is                   
s = t3 – 6t2 + 9t meters.  Find the body’s 
acceleration each time the velocity is zero.



p. 156 QQ #4

• A particle moves along a line so that its 
position at any time t > 0 is given by 

s(t) = -t2 + t + 2, where s is measured in meters                      
and t is measured in seconds.

a) What is the initial position of the particle.



p. 156 QQ #4

• A particle moves along a line so that its position 
at any time t > 0 is given by 

s(t) = -t2 + t + 2, where s is measured in meters                      
and t is measured in seconds.

b) Find the velocity of the particle at any time t.



p. 156 QQ #4

• A particle moves along a line so that its position 
at any time t > 0 is given by 

s(t) = -t2 + t + 2, where s is measured in meters                      
and t is measured in seconds.

c) Find the acceleration of the particle at any 
time t.



p. 156 QQ #4

• A particle moves along a line so that its position at any time t > 0 
is given by s(t) = -t2 + t + 2, where s is measured in meters                      
and t is measured in seconds.

d) Find the speed of the particle at the moment when s(t) = 0.



p. 180 QQ #4

• A curve in the xy-plane is defined by xy2 – x3y = 6

a) Find dy/dx



p. 180 QQ #4

• A curve in the xy-plane is defined by xy2 – x3y = 6

b) Find an equation for the tangent line at each point on the 
curve with x-coordinate 1.



p. 180 QQ #4

• A curve in the xy-plane is defined by xy2 – x3y = 6

c) Find the x-coordinate of each point on the curve where the 
tangent line is vertical.



p. 162 #11

• Find dy/dx of the curve and the slope of the curve at the 
indicated point.

  (3,4)          131)1(
22  yx



p. 162 #12

• Find dy/dx of the curve and the slope of the curve at the 
indicated point.

  (1,-7)          253)2(
22  yx



p. 162 #13

• Find where the slope of the curve is defined.

422  xyyx



p. 162 #17

• Find the lines that are tangent and normal to the curve at the 
point (2,3)

122  yxyx



p. 162 #27

• Find the first and second derivative of the following

122  yx



Bonus

• Find dy/dx if yxyx  )sin(



p. 202 1

• Find the value of c in the interval (a, b) that 
satisfies the mean value theorem.

f(x) = x2 + 2x -1 on [0, 1]



p. 242 2

• Find the linearization L(x) of f(x) at x = a.  

• Find L(a + .1) and f(a + .1)

• Then determine if the tangent line is above or 
below the curve at the value of a and give a 
reason for your answer.

4-  a  ,9)( 2  xxf



p. 251 11

• A spherical balloon is inflated with helium at 
the rate of 100π ft3/min.  

a) How fast is the balloon’s radius increasing 
at the instant the radius is 5 feet?



p. 251 11

• A spherical balloon is inflated with helium at 
the rate of 100π ft3/min.  

b) How fast is the surface area increasing at 
that instant?



p. 251 17

• Water is flowing at the rate of 50 m3/min from a 
concrete conical reservoir (vertex down) of base 
radius 45 m and height 6 m.

a) How fast is the water level falling when the 
water is 5 m deep?



p. 251 17

• Water is flowing at the rate of 50 m3/min from a 
concrete conical reservoir (vertex down) of base 
radius 45 m and height 6 m.

b) How fast is the radius of the water’s surface 
changing at that same moment?



p. 251 19a

• A 13 ft ladder is leaning against a house when it’s 
base starts to slide away.  By the time the base is 
12 feet from the house the base is moving at a 
rate of 5 ft/sec.

a) How fast is the top of the ladder sliding down 
the wall at that moment?



p. 450 2 Use L’hopitals rule to find the limit
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p. 450 6 Use L’hopitals rule to find the limit
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p. 450 8 • Use L’hopitals rule to find the limit
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p. 450 16 Use L’hopitals rule to find the limit
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p. 450 27 Use L’hopitals rule to find the limit
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p. 450 35 Use L’hopitals rule to find the limit
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p. 153 46 Find the equation of the line tangent to 
the curve at the point defined by the 
given value of t

1- at t             ty   32 42  tx



Find the equation for the line tangent to the curve at 
the given value of t

p. 182 #51

6
at t     tan5  sec3


 tytx



Find the points at which the tangent line to the curve 
is horizontal and/or vertical

p. 535 #25

4t     - 2 3tytx 



1. A curve C is defined by the parametric 
equations x = t2 – 4t +1 and y = t3.  Find the 
equation of the line tangent to the graph 

of C at the point (1, 64)?



• A zoo sponsored a one-day contest to name a new baby 
elephant.  Zoo visitors deposited entries in a special box 
between noon (t=0) and 8 P.M. (t=8).  The number of entries 
in the box t hours after noon is modeled by a differentiable 
function E for .  Values of E(T),  in hundreds of entries, at 
various times t are shown in the table.

• Use the data in the table to approximate the rate at time            
t = 7.5.  Show the computations that lead to your answer and 
explain the meaning of the found rate.

t(hours) 0 2 5 7 8
E(t)    
(hundreds of 
entries)

0 4 13 21 23



• A zoo sponsored a one-day contest to name a new baby 
elephant.  Zoo visitors deposited entries in a special box 
between noon (t=0) and 8 P.M. (t=8).  The number of entries 
in the box t hours after noon is modeled by a differentiable 
function E for .  Values of E(T),  in hundreds of entries, at 
various times t are shown in the table.

t(hours) 0 2 5 7 8
E(t)    
(hundreds of 
entries)

0 4 13 21 23
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• The function f, whose graph consists of two line segments, 
is shown.  Which of the following are  true for f on the open 
interval (-2, 2)?

I. The domain of the derivative of f is the open interval (-2, 2)
II. f is continuous on the open interval (-2,2)
III. The derivative of f is positive on the open interval (-2, 2)

a) I only
b) II only
c) III only
d) II and III only
e) I, II, and III



If the function f is continuous at x = 5, which of 
the following must be true?

5for x positive and 5for x negative is f of derivative The e)

exists 5 at x  f of derivative The)

)(lim)(lim)5()

)(lim)(lim)

)(lim)5()

55

55

5





















d

xfxffc

xfxfb

xffa

xx

xx

x


