Properties of Simple Logarithms

 $\log_{a} 1 = 0$ $\log_{a} a = 1$ $\log_{a} a^{x} = x \text{ and } a^{\log_{a} x} = x \text{ (inverse property)}$ If $\log_{a} x = \log_{a} y$ then x = y

Properties of Natural Logarithms

 $\ln 1 = 0$ $\ln e = 1$ $\ln e^{x} = x \quad and \quad e^{\ln x} = x \quad (inverse \ property)$ If $\ln x = \ln y \quad then \quad x = y$

A standard logarithm can have any positive number as its base except 1, whereas a natural log is <u>always</u> base e. Since the natural log is always base e, it will be necessary to use a calculator to evaluate natural logs unless one of the first three examples of the properties of natural logs is used. For anything such as $\ln 2 =$, a calculator must be used.

When dealing with logarithms, switching between exponential and Logarithmic form is often necessary.

Logarithmic form	Exponential Form
$\log_a b = c$	$a^{c} = b$

Write each of the following in exponential form.

1)
$$\log_4 16 = 2$$
 2) $\log_9 3 = \frac{1}{2}$ **3**) $\log_9 27 = \frac{3}{2}$ **4**) $\log_4 \frac{1}{16} = -2$

Write each of the following in logarithmic form.

5) $3^4 = 81$ **6**) $16^{1/4} = 2$ **7**) $36^{-1/2} = \frac{1}{6}$ **8**) $16^{5/4} = 32$

Simplifying Logarithms

Evaluate each of the following logarithms without the use of a calculator. Remember to write in exponential form to help if needed.

9)
$$\log_3 81 =$$
 10) $\log_4 \frac{1}{2} =$ 11) $\log_{12} 144 =$ 12) $\log_6 \frac{1}{36} =$
13) $\log_{\frac{1}{3}} \frac{9}{4} =$ 14) $\log_{0.25} 4 =$ 15) $\log_3 -3 =$ 16) $\log_8 4 =$
17) $\log_{81} \frac{1}{27} =$ 18) $\log_{\frac{1}{16}} 32 =$ 19) $\log_4 0 =$ 20) $\log_{10} 1 =$
21) $\log_4 \frac{1}{8} =$ 22) $\log_{27} \frac{1}{3} =$ 23) $\log_9 3 =$ 24) $\log_6 6^{3\pi} =$
25) $\log_{36} \frac{1}{6} =$ 26) $\log_{128} 2 =$ 27) $\log_{\frac{1}{4}} 16 =$ 28) $\log_2 z^{2\pi} =$
29) $\ln e^{12} =$ 30) $3^{\log_9 3} =$ 31) $\ln 1 =$ 32) $e^{\ln 4\pi} =$