Properties of Simple Logarithms

$\log _{a} 1=0$
$\log _{a} a=1$
$\log _{a} a^{x}=x$ and $a^{\log _{a} x}=x \quad$ (inverse property)
If $\log _{a} x=\log _{a} y$ then $x=y$

Properties of Natural Logarithms

$\ln 1=0$
$\ln e=1$
$\ln e^{x}=x \quad$ and $\quad e^{\ln x}=x \quad$ (inverse property)
If $\ln x=\ln y$ then $x=y$

A standard logarithm can have any positive number as its base except 1, whereas a natural log is always base e. Since the natural log is always base e, it will be necessary to use a calculator to evaluate natural logs unless one of the first three examples of the properties of natural logs is used. For anything such as $\ln 2=$, a calculator must be used.

When dealing with logarithms, switching between exponential and Logarithmic form is often necessary.

Logarithmic form

$\log _{a} b=c$

Exponential Form

$a^{c}=b$

Write each of the following in exponential form.

1) $\log _{4} 16=2$
2) $\log _{9} 3=\frac{1}{2}$
3) $\log _{9} 27=\frac{3}{2}$
4) $\log _{4} \frac{1}{16}=-2$

Write each of the following in logarithmic form.
5) $3^{4}=81$
6) $16^{1 / 4}=2$
7) $36^{-1 / 2}=\frac{1}{6}$
8) $16^{5 / 4}=32$

Simplifying Logarithms

Evaluate each of the following logarithms without the use of a calculator. Remember to write in exponential form to help if needed.
9) $\log _{3} 81=$
10) $\log _{4} \frac{1}{2}=$
11) $\log _{12} 144=$
12) $\log _{6} \frac{1}{36}=$
13) $\log _{\frac{2}{3}} \frac{9}{4}=$
14) $\log _{0.25} 4=$
15) $\log _{3}-3=$
16) $\log _{8} 4=$
17) $\log _{81} \frac{1}{27}=$
18) $\log _{\frac{1}{16}} 32=$
19) $\log _{4} 0=$
20) $\log _{10} 1=$
21) $\log _{4} \frac{1}{8}=$
22) $\log _{27} \frac{1}{3}=$
23) $\log _{9} 3=$
24) $\log _{6} 6^{3 x}=$
25) $\log _{36} \frac{1}{6}=$
26) $\log _{128} 2=$
27) $\log _{\frac{1}{4}} 16=$
28) $\log _{z} z^{2 x}=$
29) $\ln e^{12}=$
30) $3^{\log _{3} 5}=$
31) $\ln 1=$
32) $e^{\ln 4 x}=$

