Describe the transformation of each of the following square root functions from the parent function $y = \sqrt{x}$.

1.
$$y = \sqrt{x+4} + 3$$

2.
$$y = \sqrt{x-1} - 8$$

3.
$$y = -2\sqrt{x-3} + 5$$

4.
$$y = -\sqrt{x} - 9$$

5.
$$y = 3\sqrt{x+5}$$

6.
$$y = -\sqrt{x-8} + 1$$

Graph the following square root functions. State the domain and range of each.

7.
$$y = \sqrt{x+1} - 2$$

R:

D:

8.
$$y = -\sqrt{x-2} - 3$$

D:

R:

9.
$$y = 4\sqrt{x-3} + 2$$

D:

R:

10.
$$y = -2\sqrt{x} + 4$$

D:

R:

Describe the transformation of each of the following cube root functions from the parent function $y = \sqrt[3]{x}$. Graph each function.

11.
$$y = \sqrt[3]{x-2} + 1$$

12.
$$y = -\sqrt[3]{x+1} + 3$$

13.
$$y = \sqrt[3]{x-3} - 4$$

14.
$$y = -2\sqrt[3]{x} - 1$$

15. What is the domain and range for all cube root functions? ______

Use your graphing calculator to find the solution to the following.

16. When you look at the ocean, the distance d (in miles) you can see to the horizon can be modeled by $d = 1.22\sqrt{a}$ where a is your altitude (in feet above sea level). Determine at what altitude you can see 10 miles.

17. To find the radius r of a sphere of volume V, use the equation $r = \sqrt[3]{\frac{3V}{4\pi}}$. A balloon used for advertising special events has a volume of 225 ft³. What is the radius of the balloon?

