\qquad

3.3 Graphing Radical Functions
 \section*{For use with Exploration 3.3}

Essential Question How can you identify the domain and range of a radical function?

1 EXPLORATION: Identifying Graphs of Radical Functions

Work with a partner. Match each function with its graph. Explain your reasoning.
Then identify the domain and range of each function.
a. $f(x)=\sqrt{x}$
b. $f(x)=\sqrt[3]{x}$
c. $f(x)=\sqrt[4]{x}$
d. $f(x)=\sqrt[5]{x}$
A.

B.

C.

D.

\qquad
\qquad
3.3 Graphing Radical Functions (continued)

2 EXPLORATION: Identifying Graphs of Transformations
Work with a partner. Match each transformation of $f(x)=\sqrt{x}$ with its graph.
Explain your reasoning. Then identify the domain and range of each function.
a. $g(x)=\sqrt{x+2}$
b. $g(x)=\sqrt{x-2}$
c. $g(x)=\sqrt{x+2}-2$
d. $g(x)=-\sqrt{x+2}$
A.

B.

C.

D.

Communicate Your Answer

3. How can you identify the domain and range of a radical function?
4. Use the results of Exploration 1 to describe how the domain and range of a radical function are related to the index of the radical.
\qquad

3.3

Core Concepts

Parent Functions for Square Root and Cube Root Functions

The parent function for the family of square root functions is $f(x)=\sqrt{x}$.

Domain: $x \geq 0$, Range: $y \geq 0$

The parent function for the family of cube root functions is $f(x)=\sqrt[3]{x}$.

Domain and range: All real numbers

Notes:

Transformation	$\boldsymbol{f}(\boldsymbol{x})$ Notation	Examples	
Horizontal Translation Graph shifts left or right.	$f(x-h)$	$g(x)=\sqrt{x-2}$	2 units right
$g(x)=\sqrt{x+3}$	3 units left		

Notes:

\qquad
\qquad

3.3 Practice (continued)

Worked-Out Examples

Example \#1

Graph the function. Identify the domain and range of the function.
$g(x)=\sqrt{x}-5$
Make a table of values and sketch the graph.

\boldsymbol{x}	0	1	2	3	4
\boldsymbol{y}	-5	-4	-3.59	-3.27	-3

The radicand of a square root must be nonnegative. So, the domain is $x \geq 0$. The range is $y \geq-5$.

Example \#2

Describe the transformation of f represented by g . Then graph each function.
$f(x)=\sqrt[3]{x}, g(x)=\sqrt[3]{x+4}-5$

Notice that the function is of the form $g(x)=\sqrt[3]{x-h}+k$, where $h=-4$ and $k=-5$. So, the graph of g is a translation 4 units left and 5 units down of the graph of f.

\qquad

3.3 Practice (continued)

Practice A

In Exercises 1 and 2, graph the function. Identify the domain and range of each function.

1. $f(x)=\sqrt[3]{-3 x}+1$

2. $g(x)=2(x-5)^{1 / 2}-4$

3. Describe the transformation of $f(x)=\sqrt[4]{2 x}+5$ represented by $g(x)=-\sqrt[4]{2 x}-5$.
4. Write a rule for g if g is a horizontal shrink by a factor of $\frac{5}{6}$, followed by a translation 10 units to the left of the graph of $f(x)=\sqrt[3]{15 x+1}$.
5. Use a graphing calculator to graph $8 x=y^{2}+5$. Identify the vertex and the direction that the parabola opens.

6. Use a graphing calculator to graph $x^{2}=49-y^{2}$.

Identify the center, radius, and intercepts of the circle.

\qquad

Practice B

In Exercises 1-6, graph the function. Identify the domain and range of the function.

1. $g(x)=-\sqrt{x}+2$
2. $f(x)=\sqrt[3]{-4 x}$
3. $f(x)=\frac{1}{4} \sqrt{x+5}$
4. $h(x)=(5 x)^{1 / 2}-2$
5. $g(x)=-2(x-3)^{1 / 3}$
6. $h(x)=-\sqrt[5]{x}$

In Exercises 7-12, describe the transformation of f represented by g. Then graph each function.
7. $f(x)=\sqrt{x} ; g(x)=4 \sqrt{x-2}$
8. $f(x)=\sqrt[3]{x} ; g(x)=\sqrt[3]{x-5}-1$
9. $f(x)=x^{1 / 4} ; g(x)=\frac{1}{3}(-x)^{1 / 4}$
10. $f(x)=x^{1 / 3} ; g(x)=\frac{1}{2} x^{1 / 3}-3$
11. $f(x)=\sqrt[4]{x} ; g(x)=-\sqrt[4]{x-1}+3$
12. $f(x)=\sqrt[5]{x} ; g(x)=\sqrt[5]{-243 x}-2$

In Exercises 13-15, use a graphing calculator to graph the function. Then identify the domain and range of the function.
13. $g(x)=\sqrt[3]{2 x^{2}-3 x}$
14. $f(x)=\sqrt{\frac{1}{3} x^{2}-x+2}$
15. $h(x)=\sqrt[3]{3 x^{2}-6 x+2}$

In Exercises 16 and 17, write a rule for g described by the transformations of the graph of \boldsymbol{f}.
16. Let g be a horizontal stretch by a factor of 2 , followed by a translation 2 units up of the graph of $f(x)=\sqrt{3 x}$.
17. Let g be a translation 1 unit up and 4 units left, followed by a reflection in the y-axis of the graph of $f(x)=\sqrt{-x}-\frac{1}{2}$.

In Exercises 18 and 19, use a graphing calculator to graph the equation of the parabola. Identify the vertex and the direction that the parabola opens.
18. $3 y^{2}+5=x$
19. $x-3=-\frac{1}{2} y^{2}$

In Exercises 20 and 21, use a graphing calculator to graph the equation of the circle. Identify the center, radius, and intercepts.
20. $y^{2}=81-(x+3)^{2}$
21. $x^{2}+y^{2}+8 y+15=0$

