3.1 Review

Write each polynomial in standard form. Then classify it by degree and by number of terms.

1. $4 x+x+2$
2. $1-2 s+5 s^{4}$

For each polynomial, find the following
a) Intervals of Increase and Decrease
d) y-intercept
b) Local Maximum and Local Minimum
e) Average Rate of Change from [0, 2]
c) x-intercepts
f) End Behavior
3. $f(x)=-2 x^{4}-x^{3}+5 x^{2}-2 x+3$
4. $f(x)=4 x^{2}+4 x-6$
5) $f(x)=x^{3}-2 x^{2}+5 x-1$

Sketch the graph using the clues listed. Identify the turning points and x-intercepts.
5. $f(x)$ is negative on the intervals $(-\infty,-5)$ and $(-1,3)$
$f(x)$ is positive on the intervals $(-5,-1)$ and $(3, \infty)$
$f(x)$ is increasing on the interval $(-\infty,-3.5)$ and $(1.25, \infty)$
$f(x)$ is decreasing on the interval $(-3.5,1.25)$

6. The total revenue of a bulb company is modeled by the expression $R(X)=0.95 x^{2}+1.95 x+6$, where x is the number of bulbs produced per week and the expression is in dollars.
The cost to produce the bulbs is modeled by the expression $\mathrm{C}(\mathrm{x})=0.09 x^{2}+1.86 x-3$.
a) Write a variable expression to represent the company's profit if x bulbs are produced.
b) How much profit will the company make in a week if they produce 1,000 bulbs?
c) Find the x and y-intercept and then interpret them in the context of the problem. Does this make sense?

