Warm-up

Do now

The equation \(T = \frac{1}{4}n + 40 \) is used to estimate the temperature in degrees Fahrenheit, \(T \), based on the number of cricket chirps, \(n \), in one minute.

1. Estimate the temperature when there are no chirps. \(\frac{1}{4} \times 0 + 40 = 40 \) °F
2. Estimate the temperature when the number of chirps in one minute is 100.
 \[\frac{1}{4}(100) + 40 = 65 \] °F
3. Interpret the slope and \(T \)-intercept of the equation.

At 40 °F there are no chirps

Every degree increase in °F the number of chirps will increase by 4.

\[\frac{3}{12} \]

\[\frac{1}{10} \]

\[\frac{5}{20} \]
Parallel Lines

Lines in the same plane that never intersect have the same slope.

Use slopes and y-intercepts to determine if the lines $3x - 2y = 6$ and $y = \frac{3}{2}x + 1$ are parallel? $m = \frac{-3}{-2} = \frac{3}{2}$

Parallel

Use slopes and y-intercepts to determine if the lines $2x + 5y = 5$ and $y = -\frac{2}{5}x - 4$ are parallel? $m = -\frac{2}{5}$

Parallel

Use slopes and y-intercepts to determine if the lines $y = -\frac{1}{2}x - 1$ and $3x - 2y = 6$ are parallel? $m = \frac{3}{2}$

Not Parallel

Perpendicular Lines

Lines that intersect to form right angles. Slopes are opposite reciprocals. $\left(\frac{1}{m}\right) \left(\frac{-m}{l}\right) = -1$

Use the slopes to determine if the lines, $y = -5x - 4$ and $x - 5y = 5$ are perpendicular. $m = \frac{1}{5}$

\perp

Use the slopes to determine if the lines, $y = -3x + 2$ and $x + 3y = 4$ are perpendicular. $m = -\frac{1}{3}$

$\text{Not } \perp$

Use the slopes to determine if the lines, $y = 2x - 5$ and $x + 2y = -6$ are perpendicular. $m = -\frac{1}{2}$

\perp $m = 2$
What you will learn about:
Writing the Equation of a Line

Equation of a line:
\[y = mx + b \]

Find an equation of a line with slope \(-1\) and y-intercept \((0, -3)\):
\[m = -1 \]
\[b = -3 \]
\[y = -x - 3 \]

Find the equation of the line shown:
\[y = \frac{2}{3}x - 4 \]

Find an equation of a line given 2 points and a slope:
Point-Slope Form:
\[y - y_1 = m(x - x_1) \]
\[m = \text{slope} \]
\[(x_1, y_1) \Rightarrow \text{Given point} \]

Find an equation of a line with slope \(m = \frac{2}{3}\) that contains the point \((10, 3)\).
Write the equation in slope-intercept form.
\[y = \frac{2}{3}x + b \]
\[y = \frac{2}{3}(x - 10) \]
\[y = \frac{2}{3}x - \frac{20}{3} \]
\[y = \frac{2}{3}x - 1 \]
\[\Rightarrow \text{Slope-Inter} \]
\[y = \frac{2}{3}(x - 10) + b \]
\[3 = \frac{2}{3}(10) + b \]
\[3 = \frac{20}{3} + b \]
\[b = -1 \]

Find an equation of a line with slope \(m = \frac{5}{6}\) that contains the point \((6, 3)\).
Write the equation in slope-intercept form.
\[y = \frac{5}{6}x - 5 \]
\[y = \frac{5}{6}x - 2 \]
\[y = \frac{5}{6}x - 2 \]
HOW TO

Find an equation of a line given the slope and a point.
Step 1. Identify the slope.
Step 2. Identify the point.
Step 3. Substitute the values into the point-slope form, \(y - y_1 = m(x - x_1) \).
Step 4. Write the equation in slope-intercept form.

Find an equation of a line with slope \(m = -\frac{1}{3} \) that contains the point (6, -4). Write the equation in slope-intercept form.
\[
\begin{align*}
 y + 4 &= -\frac{1}{3}(x - 6) \\
 y &= -\frac{1}{3}x - 2 \\
\end{align*}
\]
\[
\begin{align*}
 y + 4 &= -\frac{1}{3}x + 2 \\
\end{align*}
\]

Find an equation of a line with slope \(m = -\frac{2}{5} \) that contains the point (10, -5). Write the equation in slope-intercept form.
\[
\begin{align*}
 y + 5 &= -\frac{2}{5}(x - 10) \\
 y &= -\frac{2}{5}x - 1 \\
\end{align*}
\]
\[
\begin{align*}
 y + 5 &= -\frac{2}{5}x + 4 \\
\end{align*}
\]

Find the equation of a horizontal line that contains the point (-1, 2). Write the equation in slope-intercept form.
\[
\begin{align*}
 y - 2 &= 0(x + 1) \\
 y - 2 &= 0 \\
 y &= 2 \\
\end{align*}
\]

Find the equation of a horizontal line that contains the point (-3, 8). Write the equation in slope-intercept form.
\[
\begin{align*}
 y - 8 &= 0(x + 3) \\
 y - 8 &= 0 \\
 y &= 8 \\
\end{align*}
\]

Find an equation of a line that contains the points (5, 4) and (3, 6). Write the equation in slope intercept form.