State the third congruence that must be given to prove that \(\triangle DEF \cong \triangle MNO \), using the indicated postulate or theorem.

1. Given: \(\overline{EF} \cong \overline{NO} \)
 \(\angle N \cong \angle E \)
 Method: ASA Congruence Postulate

2. Given: \(\overline{EF} \cong \overline{NO} \)
 \(\angle N \cong \angle E \)
 Method: AAS Congruence Theorem

3. Given: \(\angle D \cong \angle M \)
 \(\angle F \cong \angle O \)
 Method: ASA Congruence Postulate

Is it possible to prove that the triangles are congruent? If so, state the postulate or theorem you would use. Explain your reasoning.

4.

5.

6.

Write a two-column or a paragraph proof.

7. Given: \(C \) is the midpoint of \(XY \).
 \(\overline{BX} \perp \overline{AC}, \overline{EY} \perp \overline{CD} \)
 Prove: \(\triangle CXB \cong \triangle CYE \)

8. Given: \(AB \perp \overline{AD}, \overline{DE} \perp \overline{AD} \)
 \(C \) is the midpoint of \(BE \).
 Prove: \(\triangle ABC \cong \triangle DEC \)

9. Given: \(\angle M \cong \angle P \)
 \(\angle MOQ \cong \angle PNQ \)
 \(\overline{MN} \cong \overline{PO} \)
 Prove: \(\triangle MOQ \cong \triangle PNQ \)

10. Given: \(\angle EBC \cong \angle ECB, \overline{EB} \cong \overline{EC} \)
 \(\overline{BE} \) bisects \(\angle AEC \).
 \(\overline{CE} \) bisects \(\angle DEB \).
 Prove: \(\triangle ABE \cong \triangle DCE \)