Write the three forms of a quadratic function and give what each tell you easily about the function.

<table>
<thead>
<tr>
<th>Standard Form</th>
<th>Intercept Form</th>
<th>Vertex Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = ax^2 + bx + c)</td>
<td>(y = a(x-p)(x-q))</td>
<td>(y = a(x-h)^2 + k)</td>
</tr>
<tr>
<td>(y)-intercept</td>
<td>(x)-intercepts</td>
<td>(V(h, k))</td>
</tr>
<tr>
<td>(0, c)</td>
<td>(p, 0) (q, 0)</td>
<td></td>
</tr>
</tbody>
</table>
Given the function $f(x) = (x - 6)(x + 4)$. Find the following key components and graph the function. Show your work or explain how to get the solution.

Look at a value

Opening Direction

$a = 1$

Opens up a value is positive

X-intercepts

$x-6 = 0 \quad \quad x+4 = 0$

$x = 6 \quad \quad x = -4$

Y-intercept

$y = (x-6)(x+4)$

Let $x = 0$

$y = (0-6)(0+4)$

$(-6)(4)$

-24

Line of symmetry and vertex

Find x-coordinate of vertex halfway between intercepts

$\frac{6 + (-4)}{2} = \frac{2}{2} = 1 \quad \text{Vertex } (1, -25)$

$y = (1-6)(1+4)$

$(-5)(5)$

-25

A.O.S. $x = 1$

Domain $(-\infty, \infty)$

Range $[-25, \infty)$

[Graph of the function]
Given the function \(f(x) = -3(x + 1)^2 + 4 \). Find the following key components and graph the function. Show your work or explain how to get the solution.

\[f(x) = a(x-h)^2 + k \]

Opening Direction
\(a = -3 \)

Open down because
\(a \) is negative

Y-intercept
\[y = -3(x+1)^2 + 4 \]
Let \(x = 0 \)

\[-3(0+1)^2 + 4\]
\[-3(1)^2 + 4\]
\[-3(1) + 4\]
\[1\]
\((0,1)\)

Line of symmetry and vertex
\[V (-1,4) \]
A.0.5 \(x = -1 \)

Domain \((-\infty, \infty)\)

Range \((-\infty, 4]\)
Rewrite the function \(f(x) = -3(x + 1)^2 + 4 \) in standard form. What new information does this form give you easily?

\[
\begin{align*}
f(x) &= -3(x + 1)^2 + 4 \\
&= -3(x+1)(x+1) + 4 \\
&= -3(x^2 + 2x + 1) + 4 \\
&= -3x^2 - 6x - 3 + 4 \\
&= -3x^2 - 6x + 1
\end{align*}
\]

Standard form
\[
y = ax^2 + bx + c
\]

\(y \)-intercepts
\[
(0, 1)
\]
Rewrite the function \(f(x) = (x - 6)(x + 4) \) in standard form. What new information does this form give you easily?

\[
\begin{align*}
f(x) &= (x - 6)(x + 4) \\
\therefore f(x) &= x^2 - 6x + 4x - 24 \\
\therefore f(x) &= x^2 - 2x - 24
\end{align*}
\]
Convert the following equation from vertex form to standard form.

\[y = (x - 3)^2 - 5 \]
\[y = (x - 2)^2 + 1 \]
\[y = -2(x - 1)^2 + 2 \]
Convert the following equation from intercept form to standard form.

\[y = (2x - 3)(x + 4) \quad y = 2(x - 2)(x + 6) \quad y = -5(x - 1)(x - 3) \]

\[2x^2 + 8x - 3x - 12 \]
\[2(x^2 + 4x - 2x - 12) \]
\[2(x^2 + 4x - 12) \]
\[2x^2 + 8x - 24 \]
\[-5(x^2 - 3x - x + 5) \]
\[-5(x^2 - 4x + 3) \]
\[-5x^2 + 20x - 15 \]
Describe the transformation for each function from the function $f(x) = x^2$.

$p(x) = 2(x + 2)^2 - 3$
- Vertical stretch by factor of 2
- Shift left 2
- Down 3

$g(x) = \frac{1}{2}(x - 1)^2 + 2$
- Reflection over x-axis
- Vertical compression by a factor of $\frac{1}{2}$
- Right 1
- Up 2