Section 8.1 Pythagorean Theorem and Special Right Triangles

Pythagorean Theorem

If a triangle is a right triangle, then the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse.

PROOF: SEE EXAMPLE 1.

If... $\triangle ABC$ is a right triangle.

Then...
$$a^2 + b^2 = c^2$$

Converse of the Pythagorean Theorem

If the sum of the squares of the lengths of two sides of a triangle is equal to the square of the length of the third side, then the triangle is a right triangle.

If... $a^2 + b^2 = c^2$

PROOF: SEE EXERCISE 17.

Then... $\triangle ABC$ is a right triangle.

Comparing a², b², and c²

$$a^2+b^2>c^2=0$$
 betwee D

Right Obtuse Acute

Use the figure shown. Find AB.

ter your answq
$$\lambda^{2} + 15^{\frac{3}{2}} = c^{\lambda}$$

$$144 + 225 = c^{\lambda}$$

$$369 = c^{2}$$

$$C = 19.20$$

Use the figure shown. Find EF.

ter your anzwer
$$7^{2} + b^{2} = 10^{2}$$

$$44 + b^{2} = 100$$

$$b^{2} = 51$$

$$b = 7.14$$

Classify the triangle with the given sides as acute, obtuse, or right.

2, 3, 4 3, 4, 5 32+42=52 9+16 = 25 25=25 4+9=16 13416 Right Acuta 0.6, 0.8, 0.9 1, 1, $\sqrt{2}$ 12+12=(12) .36+.64 .81 1.0 >.81 1+1=2 2 = 2 Obtusc Right 11, 12, 17 11, 14, 17 Acute obtusz

(1.2, 2.0,2) 1.2, 2.0, 2.5 1.44+4- 4 5.447 4 obtuse $\sqrt{2}$, 2, $\sqrt{5}$ (VZ) +2 (VS) 2+4 5 6 > 5 obtuse 1, 3, 6 12+32 1+9 36 10 4 34 No A

A. To satisfy safety regulations, the distance from the wall to the base of a ladder should be at least one-fourth the length of the ladder. Did Drew set up the ladder correctly?

SOLUTION

$$2.5^{2}+9^{2}=c^{2}$$

 $4.25+81=c^{2}$
 $87.25=c^{2}$
 $(9.34)(.25)$
 2.33

Yes ladder is set up correctly

Is $\triangle MNO$ a right triangle? Explain.

ter your answel
$$a^2 + 35^2 = 37^3$$

$$144 + 1225 = 1364$$

$$1369 = 1369$$

$$Yes$$

Special Right Triangles

45°-45° - 90°

Is there a relationship between the lengths of \overline{AB} and \overline{AC} in $\triangle ABC$? Explain.

SOLUTION

· lass are same length

· Hyponenusc is Les times V2

COUR = 6

 $x^{2} + c^{2} = c^{3}$ $\sqrt{2} + c^{2} = \sqrt{c^{3}}$ $C = a\sqrt{2}$

3. Find the side lengths of the 45° - 45° - 90° triangle.

a. What are XZ and YZ?

- **3.** Find the side lengths of the 45° - 45° - 90° triangle.
- **b.** What are *JK* and *LK*?

Enter your answer.

45°-45°-90° Triangle Theorem

In a 45° - 45° - 90° triangle, the legs are congruent and the length of the hypotenuse is $\sqrt{2}$ times the length of a leg.

PROOF: SEE EXERCISE 18.

Then... $BC = s\sqrt{2}$

Special Right Triangles

$$a^{2}+b^{2}=(2a)^{2}$$
 $a^{2}+b^{2}=4a^{2}$

- · Short les is half the hypotenuse
- · Long les is equal to Short les times \$\sqrt{3}\$

a. What are PQ and PR?

Enter your answer.

What are *UV* and *TV*?

nter your answer

30°-60°-90° Triangle Theorem

In a 30°-60°-90° triangle, the length of the hypotenuse is twice the length of the short leg. The length of the long leg is $\sqrt{3}$ times the length of the short leg.

PROOF: SEE EXERCISE 19.

Then... $AC = s\sqrt{3}$, AB = 2s

b. What are AC and BC?

Enter your answer. $\frac{14}{\sqrt{2}} = \frac{14}{\sqrt{2}} = 7\sqrt{2}$ 9.85 = 9.81

What are AB and BC?

iter your answer.

A. Alejandro needs to make both the horizontal and vertical supports, \overline{AC} and \overline{AB} , for a ramp. Is one 12-foot board long enough for both supports? Explain.

SOLUTION

