Chapter 3 Review - Transformations

Name: \qquad

Review Section:

1. Given $\triangle \mathrm{ABC}$ has vertices at $\mathrm{A}(0,-4), \mathrm{B}(2,-1), \mathrm{C}(5,0)$.
a. Find the vertices of the image of $\Delta \mathrm{ABC}$ under $R_{y \text {-axis }}$
$A^{\prime}(\square, \quad)$
$B^{\prime}(\square, \quad)$
C' \qquad , __

$A^{\prime}($ \qquad
$B^{\prime}(\square, \quad, \quad)$
$C^{\prime}($ \qquad
2. Given $\triangle B A D$ with $\mathrm{B}(-4,1), \mathrm{A}(3,2)$, and $\mathrm{D}(2,-2)$ use the following transformation $\left(R_{y=-1} \circ R_{y=x}\right)$

\qquad) \qquad

B" \qquad , \qquad) A " \qquad D" \qquad , _
3. Given $\Delta M L B \mathrm{M}(-5,-3), \mathrm{L}(-1,-4)$, and $\mathrm{B}(1,3)\left(T_{(0,3)} \circ R_{X \text {-axis }}\right)$

4. Given quadrilateral ESPN with $\mathrm{E}(-4,-3), \mathrm{S}(-2,2), \mathrm{P}(3,1)$, and $\mathrm{N}(5,-2),\left(R_{x=1} \circ r_{\left(180^{\circ}, 0\right)}\right)$

$E^{\prime}($ \qquad
\qquad , ,_() $P^{\prime}($ \qquad , __ $N^{\prime}($ \qquad ,
\qquad S" \qquad ,) P" \qquad , \qquad) $\mathrm{N}^{\prime \prime}$ \qquad
5. Refer to the coordinate grid below. The scale on each axis is one.
a. Describe and write a rule for a composite transformation that will map $\triangle A B C$ onto $\triangle D E F$.

b. Which point of $\triangle A B C$ is the image of point B under your composite transformation from Part b?
6. Find the coordinates of the vertices of each image.

a. $\quad R_{y=x}(Q R S T)$
b. $r_{\left(270^{\circ}, 0\right)}(Q R S T)$
Q' \qquad
Q' \qquad
R^{\prime} \qquad R' \qquad
S' \qquad
S' \qquad T' \qquad T' \qquad
c. $T_{\langle-3,-1\rangle}(Q R S T)$
d. $\left(R_{y=-x} \circ T_{\langle-2,-1\rangle}\right)(Q R S T)$
Q' \qquad Q' \qquad
R'
R' \qquad
S'
S' \qquad
T' \qquad

T' \qquad
7. A reflection over $x=-4$ followed by a reflection over $x=6$ result in a translation in the direction of UP DOWN LEFT RIGHT a total distacne \qquad
8. A reflection over $y=6$ followed by a reflection over $y=-8$ result in a translation in the direction of UP DOWN LEFT RIGHT a total distacne of \qquad .
9. If you wanted to translate a shape to the right 20 units, you could reflect over $x=-5$ and then $x=$
\qquad .
10. If you want to translate a shape down 16 unitls, you could reflect over $y=-5$ and then $y=$
\qquad .
11. If you want to translate a shape right 24 unitls, you could reflect over $x=$ \qquad and then $\mathrm{x}=7$.
12. Suppose m is the line $x=6$ and n is the line $x=-2$. Write the following composition as one translation $R_{m} \circ R_{n}$.

$$
\left.R_{m} \circ R_{n}=T_{\langle \rangle}\right\rangle
$$

13. Find a translation that has the same effect as the composition of translations below.
$T_{\langle-3,6\rangle}(x, y)$ followed by $T_{\langle-7,-4\rangle}(x, y)$
14. Point $P^{\prime}(7,-4)$ is the image of point $P(5,-8)$ under a translation. What is the image of $(0,-6)$ under the same translation?
15. The rule $T_{(-4,6\rangle}$ is used for point $(2,-7)$. Which quadrant is the translated point in the coordinate system?
16. In the isosceles trapezoid below, $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=7$ centimeters.

a. Identify all, if any reflection symmetries. If there are reflections, draw or describe the line(s) of reflection. Describe any angle(s) of rotation for the figure.
17. Identify any reflection or/and rotational symmetry. On either, draw the line(s) of symmetry and describe the angle(s) of rotation.

18. Which words have horizontal reflection symmetry?
A) COOKBOOK
B) BOB
C) ROB
D) SEEK
19. Give the coordinates of the image of the point $(-6,3)$ under the given transformation.

Transformation	New Coordinates
$r_{\left(90^{\circ}, 0\right)}$	
$R_{y=-x}$	
$\left(R_{y=0} \circ R_{y=4)}\right.$	
What single rule would work as well?	
$\left(r_{\left(180^{\circ}, 0\right)} \circ r_{\left(270^{\circ}, 0\right)}\right.$	
What single rotation could you do?	
$T_{(8,-5)}$	
$\left(R_{y=x)} \circ T_{(-2,4)}\right.$	

20. Use the diagram to describe the transformation for each of the following.
a. Pre-image: Shape I

Image: Shape II
b. Pre-image: Shape II

Image: Shape III
c. Pre-image: Shape IV Image: Shape II

d. Pre-image: Shape I Image: Shape IV
e. Preimage: Shape I

Image: Shape III

