Review Section:

1. Find a counterexample to show that this statement is not true. If two angles are congruent, then they are vertical.

2. If point (p, q) is $\frac{1}{3}$ of the way from A to B, what are the values of q and q?

 Distance between x-values

 $-3 - (-5) = 2

 Distance between y-values

 $3 - (-4) = 7

 $(\frac{2}{3}) = 1.5

 $7(\frac{3}{4}) = 5.25

 $-\frac{5}{1.5} = -\frac{3.5}{3.5}

 $-4 + 5.25 = 1.25$

3. Consider the statement: If James has at least two $10 bills, then he has at least $20.

 a. Is this a true statement? Justify your reasoning.

 b. Write the converse of this statement. Is this a true statement? Explain.

 If James has at least $20, then he has at least two $10 bills.

4. Find the value of the variable.

 $2x + 3x = 90

 $5x = 90

 $x = 18$

 $6x = 4x + 16

 $2x = 16

 $x = 8$

 $8x = 4x + 12

 $4x = 12

 $x = 3

 $8x + 13y = 180

 $2y + 13y = 180

 $13y = 150

 $y = 12$
Section: Properties of Parallel Lines

Use the figure to answer each question in this section.

5. If $c \parallel d$, $a \parallel b$, and $m\angle 17 = 45^\circ$, then $m\angle 6 = \underline{\ \ \ \ \ \ \ }$

6. If $\angle 15 \cong \angle 8$ then which two lines are parallel? Explain your answer.

7. Find the value of x.

8. Use the figure to the right. Lines a, b, c, and d intersect as shown.
 a. Which pair of lines are parallel?

 $53y + 5y = 180$
 $2 = 53 + 5$

 b. Find the value of the variables.

 $c = 56 \quad s = 85 \quad t = 46 \quad u = 78$

 $v = 46 \quad x = 124 \quad y = 88 \quad z = 92$

9. Find the value of the variable that will make the lines parallel.

 $15x + 7 + 9x + 6 = 180$
 $24x + 12 = 180$
 $24x = 168$
 $x = 7$

 $8x + 14 = 11x - 10$
 $24 = 3x$
 $x = 8$

 $12x - 4 = 10x + 10$
 $2x = 14$
 $x = 7$
Section: Triangle Sum and Exterior Angle Theorem

10. Find the values of the variable.

\[2x + 2x + 10 + 94 = 180\]
\[4x = 76\]
\[x = 19\]

\[\begin{align*}
4y + 7y + 6 &= 114 \\
11y + 6 &= 110 \\
y &= 10
\end{align*}\]

11. Given the figure, find the values of the variables.

\[\begin{align*}
x + 82 + 54 &= 180 \\
x + 136 &= 180 \\
x &= 44
\end{align*}\]

\[y = 82 + 54 = 136\]

\[z = 136\]

Section: Slopes of Parallel and Perpendicular Lines

12. Are the lines parallel, perpendicular, or neither?

\[3x + 2y = 6\]
\[-3x\]
\[2y = -3x + 6\]

\[y = -\frac{3}{2}x + 3\]

\[3x + 2y = 6\]

\[y = \frac{2}{3}x - 2\]

13. Write an equation for a line (in slope-intercept form) parallel to \(y = -5x - 3\) and passing through the point \((2, -12)\)

\[m = -5\]

\[y - y_1 = m(x - x_1)\]

\[\begin{align*}
\gamma + 12 &= -5(x - 2) \\
\gamma + 12 &= -5x + 10
\end{align*}\]

\[\gamma = -5x - 2\]

14. Write an equation for a line (in slope intercept form) perpendicular to the line \(y = -2x + 4\) and passes through the point \((-4, -1)\)

\[m = \frac{1}{2}(-4, -1)\]

\[y + 1 = \frac{1}{2}(x + 4)\]

\[y + 1 = \frac{1}{2}x + 2\]
15. Given the following figure, find which lines will be parallel and/or perpendicular. Verify by using slopes.

\[m = \frac{y_2 - y_1}{x_2 - x_1} \]

- **Slope of \(\ell \)** (0, 5) (8, 5)
 \[\frac{5 - 5}{8 - 0} = \frac{0}{8} = 0 \]
- **Slope of \(\nu \)** (6, 8) (8, 5)
 \[\frac{8 - 5}{8 - 6} = \frac{3}{2} \]
- **Slope of \(\delta \)** (0, 1) (5, 2)
 \[\frac{2 - 1}{5 - 0} = \frac{1}{5} \]

Slope of \(r \) (1, 1) (0, -4)
\[\frac{-4 - 1}{0 + 1} = -5 \]

Slope of \(t \) (8, 5) (4, 7)
\[\frac{7 - 5}{4 - 8} = \frac{-2}{-4} = \frac{1}{2} \]

\(q \parallel v \)
\(s \perp r \)

Section Proofs

16. Given \(a \parallel b, b \parallel c \)

Prove \(a \parallel c \)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. [a \parallel b, b \parallel c]</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (\angle 1 \equiv \angle 2) and (\angle 2 \equiv \angle 3)</td>
<td>2. Corresponding (\angle)'s</td>
</tr>
<tr>
<td>3. (\angle 1 \equiv \angle 3)</td>
<td>3. Substitution Property</td>
</tr>
<tr>
<td>4. [a \parallel c]</td>
<td>4. Converse of Corresponding (\angle)'s</td>
</tr>
</tbody>
</table>
17. Given: \(FD \parallel CA \)
 \(\angle 3 \equiv \angle 4 \)

Prove: \(\angle 5 \equiv \angle 6 \)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (FD \parallel CA) (\angle 3 \equiv \angle 4)</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (\angle 1 \equiv \angle 4)</td>
<td>2. Alternate Interior (\angle)’s</td>
</tr>
<tr>
<td>3. (\angle 1 \equiv \angle 5)</td>
<td>3. Vertical Angles are Congruent</td>
</tr>
<tr>
<td>4. (\angle 3 \equiv \angle 6)</td>
<td>4. Alternate Interior (\angle)’s</td>
</tr>
<tr>
<td>5. (\angle 3 \equiv \angle 1)</td>
<td>5. Substitution</td>
</tr>
<tr>
<td>6. (\angle 3 \equiv \angle 5)</td>
<td>6. Substitution</td>
</tr>
<tr>
<td>7. (\angle 5 \equiv \angle 6)</td>
<td>7. Substitution</td>
</tr>
</tbody>
</table>

18. Given: \(a \parallel b \)

Prove: \(\angle 9 \text{ and } \angle 14 \text{ are supplementary} \)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (a \parallel b)</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (m\angle 9 + m\angle 11 = 180)</td>
<td>2. Linear Pair Post.</td>
</tr>
<tr>
<td>3. (\angle 11 \equiv \angle 14)</td>
<td>3. Alt (\angle) Interior (\angle)’s</td>
</tr>
<tr>
<td>4. (m\angle 11 = m\angle 14)</td>
<td>4. Definition of Congruent Angles</td>
</tr>
<tr>
<td>5. (m\angle 9 + m\angle 14 = 180)</td>
<td>5. Substitution Property</td>
</tr>
<tr>
<td>6. (\angle 9 \text{ and } \angle 14 \text{ are Supp})</td>
<td>6. Def of Supp (\angle)’s</td>
</tr>
</tbody>
</table>